This work provides temperature dependent unimolecular rates of syn-CH3CHOO at higher pressures.
We report a type of highly efficient double hydrogen atom transfer (DHAT) reaction. The reactivities of 3‐aminopropanol and 2‐aminoethanol towards Criegee intermediates (syn‐ and anti‐CH3CHOO) were found to be much higher than those of n‐propanol and propylamine. Quantum chemistry calculation has confirmed that the main mechanism of these very rapid reactions is DHAT, in which the nucleophilic attack of the NH2 group is catalyzed by the OH group which acts as a bridge of HAT. Typical gas‐phase DHAT reactions are termolecular reactions involving two hydrogen bonding molecules; these reactions are typically slow due to the substantial entropy reduction of bringing three molecules together. Putting the reactive and catalytic groups in one molecule circumvents the problem of entropy reduction and allows us to observe the DHAT reactions even at low reactant concentrations. This idea can be applied to improve theoretical predictions for atmospherically relevant DHAT reactions.
Via intramolecular H atom transfer, 3-aminopropanol is more reactive toward Criegee intermediates, in comparison with amines or alcohols. Here we accessed the substituent effect of Criegee intermediates in their reactions with 3-aminopropanol. Through realtime monitoring the concentrations of two Criegee intermediates with their strong UV absorption at 340 nm, the experimental rate coefficients at 298 K (100−300 Torr) were determined to be (1.52 ± 0.08) × 10 −11 and (1.44 ± 0.22) × 10 −13 cm 3 s −1 for the reactions of 3-aminopropanol with (CH 3 ) 2 COO (acetone oxide) and CH 2 CHC(CH 3 )OO (methyl vinyl ketone oxide), respectively. Compared to our previous experimental value for the reaction with syn-CH 3 CHOO, (1.24 ± 0.13) × 10 −11 cm 3 s −1 , we can see that the methyl substitution at the anti position has little effect on the reactivity while the vinyl substitution causes a drastic decrease in the reactivity. Our theoretical calculations based on CCSD(T)-F12 energies reproduce this 2-order-of-magnitude decrease in the rate coefficient caused by the vinyl substitution. Using the activation strain model, we found that the interaction of Criegee intermediates with 3aminopropanol is weaker for the case of vinyl substitution. This effect can be further rationalized by the delocalization of the lowest unoccupied molecular orbital for the vinyl-substituted Criegee intermediates. These results would help us better estimate the impact of similar reactions like the reactions of Criegee intermediates with water vapor, some of which could be difficult to measure experimentally but can be important in the atmosphere. We also found that the B2PLYP-D3BJ/aug-cc-pVTZ calculation can reproduce the CCSD(T)-F12 reaction barrier energies within ca. 1 kcal mol −1 , indicating that the use of the B2PLYP-D3BJ method is promising for future predictions of the reactions of larger Criegee intermediates.
Abstract. Criegee intermediates (CIs) are formed in the ozonolysis of unsaturated hydrocarbons and play a role in atmospheric chemistry as a non-photolytic OH source or a strong oxidant. Using a relative rate method in an ozonolysis experiment, Newland et al. (2015) reported high reactivity of isoprene-derived Criegee intermediates towards dimethyl sulfide (DMS) relative to that towards SO2 with the ratio of the rate coefficients kDMS+CI/kSO2+CI = 3.5 ± 1.8. Here we reinvestigated the kinetics of DMS reactions with two major Criegee intermediates formed in isoprene ozonolysis, CH2OO, and methyl vinyl ketone oxide (MVKO). The individual CI was prepared following the reported photolytic method with suitable (diiodo) precursors in the presence of O2. The concentration of CH2OO or MVKO was monitored directly in real time through their intense UV–visible absorption. Our results indicate the reactions of DMS with CH2OO and MVKO are both very slow; the upper limits of the rate coefficients are 4 orders of magnitude smaller than the rate coefficient reported by Newland et al. (2015) These results suggest that the ozonolysis experiment could be complicated such that interpretation should be careful and these CIs would not oxidize atmospheric DMS at any substantial level.
Abstract. Criegee intermediates (CIs) are formed in the ozonolysis of unsaturated hydrocarbons and play a role in atmospheric chemistry as a non-photolytic OH source or a strong oxidant. Using a relative rate method in an ozonolysis experiment, Newland et al. (2015) reported high reactivity of isoprene-derived Criegee intermediates towards dimethyl sulfide (DMS) relative to that towards SO2 with the ratio of the rate coefficients kDMS+CI/kSO2+CI = 3.5 ± 1.8. Here we reinvestigated the kinetics of DMS reactions with two major Criegee intermediates formed in isoprene ozonolysis, CH2OO and methyl vinyl ketone oxide (MVKO). The individual CI was prepared following reported photolytic method with suitable (diiodo) precursors in the presence of O2. The concentration of CH2OO or MVKO was monitored directly in real time through their intense UV-visible absorption. Our results indicate the reactions of DMS with CH2OO and MVKO are both very slow; the upper limits of the rate coefficients are 4 orders of magnitude smaller than that reported by Newland et al. These results suggest that the ozonolysis experiment could be complicated such that interpretation should be careful and these CIs would not oxidize atmospheric DMS at any substantial level.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.