In this study, Y2O3/TiO2-loaded polyester fabric was prepared to improve the catalytic activity of the TiO2 and to increase its reuse efficiency. The samples were systematically characterized by scanning electron microscopy (SEM), X-ray diffractometry (XRD), X-ray photoelectron spectroscopy (XPS), and infrared spectroscopy (FT-IR). Furthermore, the degradation performance of methyl orange in the presence of simulated visible light irradiation was also investigated. The results showed that the TiO2 in the Y2O3/TiO2 composite photocatalyst was suitably anatase. In addition, Y2O3/TiO2-loaded polyester fabric had higher photocatalytic performance than that of pure polyester fabric under visible light and the degradation rate reached 83% after 120 min of light exposure but remained above 50% after repeated exposure (three times). Compared to the pure polyester fabric, Y2O3/TiO2-loaded polyester fabric had self-cleaning effects in methyl blue and soy sauce solutions under visible light.
In this study, carbon fiber-reinforced polyamide 6 composites were prepared by in situ polymerization via vacuum-assisted resin transfer molding (VARTM) in order to evaluate the effect of processing parameters on the mechanical properties and mold filling ratio. At the molding temperature of 140 °C, a high degree of polymerization of the monomer and impregnation of the resin in the preform were empirically observed. The effect of the molding temperature was analyzed by monitoring the mechanical properties (tensile, bending, and impact strength). The mechanical tests showed that the tensile strength, bending strength, bending modulus, and impact strength were highest for the specimens molded at 140 °C compared to those treated at other temperatures. The experimental results were compared with numerical simulations in order to evaluate the relationship between the mold filling ratio and filling time for large-scale automotive parts with various shapes and sizes. The comparison is of great significance for predicting the mold design as well as processing parameters for large-scale automotive parts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.