In this study, we simulated vegetation net primary productivity (NPP) using the boreal ecosystem productivity simulator (BEPS) between 2003 and 2012 over Northeast China, a region that is significantly affected by climate change. The NPP was then validated against the measurements that were calculated from tree ring data, with a determination coefficient (R2) = 0.84 and the root mean square error (RMSE) = 42.73 gC/m2·a. Overall, the NPP showed an increasing trend over Northeast China, with the average rate being 4.48 gC/m2·a. Subsequently, partial correlation and lag analysis were conducted between the NPP and climatic factors. The partial correlation analysis suggested that temperature was the predominant factor that accounted for changes in the forest NPP. Solar radiation was the main factor that affected the forest NPP, and the grass NPP was the most closely associated with precipitation. The relative humidity substantially affected the annual variability of the shrub and crop NPPs. The lag time of the NPP related to precipitation increased with the vegetation growth, and it was found that the lag period of the forest was longer than that of grass and crops, whereas the cumulative lag month of the forest was shorter. This comprehensive analysis of the response of the vegetation NPP to climate change can provide scientific references for the managing departments that oversee relevant resources.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.