Clinical evidence suggests that, compared with alendronate, risedronate reduces fracture risk faster and more potently, with less bone mass gain. We tested the hypothesis that risedronate improves bone quality faster than alendronate using calcium-deficient, ovariectomized (OVX) rats. Female Sprague-Dawley rats at 24 weeks of age were divided into sham-operated and OVX groups and fed a low-calcium (0.05%) diet under paired feeding. After 12 weeks, OVX rats were divided into five groups and treated with vehicle, risedronate (3.5 and 17.5 μg/kg/week, s.c.) or alendronate (7 and 35 μg/kg/week, s.c.). Rats were killed 6-8 weeks later and the bone architecture and strength of the left femur were evaluated by micro-computed tomography and a three-point bending test. Trabecular bone mineral density (BMD), number and thickness were significantly lower in OVX rats than in the sham-operated group. Cortical BMD, bone area (Ct.Ar), and thickness (Ct.Th) were similarly decreased. Risedronate significantly improved Ct.Ar (+8%) and Ct.Th (+9%) at 6 weeks, while alendronate only caused a significant improvement in Ct.Ar (+8% at 6 weeks) and only at the higher dose. At 8 weeks, both risedronate and alendronate significantly increased trabecular BMD compared with the vehicle. Bone strength parameters showed a significant correlation between Ct.Ar and Ct.Th. Risedronate significantly improved maximum load at 6 weeks, while alendronate failed to produce any significant changes. Our results suggest that risedronate is superior to alendronate at improving cortical bone architecture and strength, and that enhanced bone quality partly accounts for risedronate's efficacy.
Teriparatide (TPTD), a recombinant human parathyroid hormone N-terminal fragment (1–34), is a widely used bone anabolic drug for osteoporosis. Sequential treatment with antiresorptives such as bisphosphonates after TPTD discontinuation is generally recommended. However, relative effects of bisphosphonates have not been determined. In the present study, we directly compared effects of risedronate (RIS) and alendronate (ALN) on bone mineral density (BMD), bone turnover, structural property and strength in ovariectomized (OVX) rats, when administered after TPTD. Female Sprague Dawley rats were divided into one sham-operated and eight ovariectomized groups. TPTD, RIS, and ALN were given subcutaneously twice per week for 4 or 8 weeks after 4 week treatment with TPTD. TPTD significantly increased BMD (+9.6%) in OVX rats after 4 weeks of treatment. 8 weeks after TPTD withdrawal, vehicle-treated group showed a blunted BMD increase of +8.4% from the baseline. In contrast, 8 weeks of treatment with RIS and ALN significantly increased BMD to 17.4 and 21.8%, respectively. While ALN caused a consistently larger increase in BMD, sequential treatment with RIS resulted in lower Tb.Sp compared to ALN in the fourth lumbar vertebra as well as in greater stiffness in compression test. In conclusion, the present study demonstrated that sequential therapy with ALN and RIS after TPTD both improved bone mass and structure. Our results further suggest that RIS may have a greater effect on improving bone quality and stiffness than ALN despite less prominent effect on BMD. Further studies are necessary to determine clinical relevance of these findings to fracture rate.
Combination therapy of active vitamin D 3 with some bisphosphonates (BPs) has been reported to be clinically beneficial. However, combination therapy of eldecalcitol (ELD) with BP has to date not been validated as to whether it is beneficial in the clinical setting. Preclinical studies suggested that simultaneous treatment with ELD and some BPs is more effective than monotherapy. However, the relative potency of various BPs, when used in combination with ELD, is completely unknown. In this study, we examined and compared the effects of risedronate (RIS), alendronate (ALN), and minodronate (MIN) alone or in combination with ELD on bone mass, microarchitecture, strength, and material properties in ovariectomized Sprague-Dawley rats aged 13 weeks. RIS, ALN, MIN, and ELD were administered five times weekly for 16 weeks. Micro-computed tomography analysis, compression test, and Fourier transform infrared (FTIR) imaging analysis were performed 16 weeks after treatment initiation. Trabecular and cortical bone mineral density (BMD) in the fourth lumbar vertebra (L4) significantly increased in the RIS + ELD, ALN + ELD, and MIN + ELD groups compared with the vehicle group. Moreover, the bone microarchitecture of L4 in all the BP + ELD groups also significantly improved. On mechanical testing of L4, the maximum load was significantly increased in the RIS + ELD and ALN + ELD groups. FTIR analysis revealed that the mineral-to-collagen ratio of trabecular bone in L3 of all the BP + ELD groups was significantly increased compared with the vehicle group. By contrast, the carbonate-to-phosphate ratio, a parameter of mineral immaturity, was significantly decreased in the RIS + ELD and ALN + ELD groups. BP + ELD improved the BMD and structural properties of the bone to a similar extent. RIS + ELD and ALN + ELD also improved bone strength. Furthermore, treatment with BP + ELD improved the bone material. These results suggest that the combination therapy of BP and ELD is beneficial and warrants further clinical trials.
This study aims to verify the effects of “legume-based noodles” as a staple food for lunch, specifically: blood glucose, cognitive function tests, Kansei value, work questionnaires, typing, and body weight. The experiment is divided into two groups: the intervention group (legumes-based noodle) and the control group (regular lunch). Both groups have similar menu except the staple food. The intervention group resulted in a statistically significant lower blood glucose area under the curve (AUC) and lower maximum blood glucose levels during the afternoon work hours on weekdays. In addition, the Kansei value “concentration” decreased at the end of the workday in the control group compared to before and after lunch but did not decrease in the intervention group. Furthermore, the number of typing accuracy was higher in the intervention group than in the control group, and the questionnaire responses for “work efficiency” and “motivation” were more positive. These results suggest that eating legume-based noodles may lead to improved performance of office workers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.