Surface-enhanced Raman spectroscopy (SERS) represents a very powerful tool for the identification of molecular species, but unfortunately it has been essentially restricted to noble metal supports (Au, Ag and Cu). While the application of semiconductor materials as SERS substrate would enormously widen the range of uses for this technique, the detection sensitivity has been much inferior and the achievable SERS enhancement was rather limited, thereby greatly limiting the practical applications. Here we report the employment of non-stoichiometric tungsten oxide nanostructure, sea urchin-like W18O49 nanowire, as the substrate material, to magnify the substrate–analyte molecule interaction, leading to significant magnifications in Raman spectroscopic signature. The enrichment of surface oxygen vacancy could bring additional enhancements. The detection limit concentration was as low as 10−7 M and the maximum enhancement factor was 3.4 × 105, in the rank of the highest sensitivity, to our best knowledge, among semiconducting materials, even comparable to noble metals without ‘hot spots'.
More than just an empty shell: Multishelled Co3O4 microspheres were synthesized as anode materials for lithium‐ion batteries in high yield and purity. As their porous hollow multishell structure guarantees a shorter Li+ diffusion length and sufficient void space to buffer the volume expansion, their rate capacity, cycling performance, and specific capacity were excellent (1615.8 mA h g−1 in the 30th cycle for triple‐shelled Co3O4; see graph).
Owing to the high volumetric capacity and low redox potential, zinc (Zn) metal is considered to be a remarkably prospective anode for aqueous Zn‐ion batteries (AZIBs). However, dendrite growth severely destabilizes the electrode/electrolyte interface, and accelerates the generation of side reactions, which eventually degrade the electrochemical performance. Here, an artificial interface film of nitrogen (N)‐doped graphene oxide (NGO) is one‐step synthesized by a Langmuir–Blodgett method to achieve a parallel and ultrathin interface modification layer (≈120 nm) on Zn foil. The directional deposition of Zn crystal in the (002) planes is revealed because of the parallel graphene layer and beneficial zincophilic‐traits of the N‐doped groups. Meanwhile, through the in situ differential electrochemical mass spectrometry and in situ Raman tests, the directional plating morphology of metallic Zn at the interface effectively suppresses the hydrogen evolution reactions and passivation. Consequently, the pouch cells pairing this new anode with LiMn2O4 cathode maintain exceptional energy density (164 Wh kg−1 after 178 cycles) at a reasonable depth of discharge, 36%. This work provides an accessible synthesis method and in‐depth mechanistic analysis to accelerate the application of high‐specific‐energy AZIBs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.