More than just an empty shell: Multishelled Co3O4 microspheres were synthesized as anode materials for lithium‐ion batteries in high yield and purity. As their porous hollow multishell structure guarantees a shorter Li+ diffusion length and sufficient void space to buffer the volume expansion, their rate capacity, cycling performance, and specific capacity were excellent (1615.8 mA h g−1 in the 30th cycle for triple‐shelled Co3O4; see graph).
Similar to heterostructures composed of different materials, possessing unique properties due to the synergistic effect between different components, the crystal-phase heterostructures, one variety of hetero-phase structures, composed of different crystal phases in monometallic nanomaterials are herein developed, in order to explore crystal-phase-based applications. As novel hetero-phase structures, amorphous/crystalline heterostructures are highly desired, since they often exhibit unique properties, and hold promise in various applications, but these structures have rarely been studied in noble metals. Herein, via a one-pot wet-chemical method, a series of amorphous/crystalline hetero-phase Pd nanosheets is synthesized with different crystallinities for the catalytic 4-nitrostyrene hydrogenation. The chemoselectivity and activity can be fine-tuned by controlling the crystallinity of the as-synthesized Pd nanosheets. This work might pave the way to preparing various hetero-phase nanostructures for promising applications.
More than just an empty shell: Multishelled Co3O4 microspheres were synthesized as anode materials for lithium‐ion batteries in high yield and purity. As their porous hollow multishell structure guarantees a shorter Li+ diffusion length and sufficient void space to buffer the volume expansion, their rate capacity, cycling performance, and specific capacity were excellent (1615.8 mA h g−1 in the 30th cycle for triple‐shelled Co3O4; see graph).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.