Lithium-ion batteries have made significant commercial and academic progress in recent decades. Zinc oxide (ZnO) has been widely studied as a lithium-ion battery anode due to its high theoretical capacity of 987 mAh g-1, natural abundance, low cost, and environmental friendliness. However, ZnO suffers from poor electronic conductivity and large volume variation during the battery discharge/charge process, leading to capacity deterioration during long-term cycling. Herein, porous ZnO@C nanoplates are developed to offer short ion diffusion pathways and good conduction networks for both Li ions and electrons. The porous nanoplates provide abundant active sites for electrochemical reactions with minimized charge transfer impedance. As a result, the porous ZnO@C nanoplates deliver higher performance for lithium-ion storage compared with a bare ZnO anode. Furthermore, with the introduction of reduced graphene oxide (rGO), the ZnO@C@rGO composite anode achieves a capacity of 229.3 mAh g-1 at a high current density of 2 A g-1.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.