Myoglobin reconstituted with iron porphycene catalyzes the cyclopropanation of styrene with ethyl diazoacetate. Compared to native myoglobin, the reconstituted protein significantly accelerates the catalytic reaction and the k/K value is 26-fold enhanced. Mechanistic studies indicate that the reaction of the reconstituted protein with ethyl diazoacetate is 615-fold faster than that of native myoglobin. The metallocarbene species reacts with styrene with the apparent second-order kinetic constant of 28 mM s at 25 °C. Complementary theoretical studies support efficient carbene formation by the reconstituted protein that results from the strong ligand field of the porphycene and fewer intersystem crossing steps relative to the native protein. From these findings, the substitution of the cofactor with an appropriate metal complex serves as an effective way to generate a new biocatalyst.
A mechanistic study of HO-dependent C-H bond hydroxylation by myoglobin reconstituted with a manganese porphycene was carried out. The X-ray crystal structure of the reconstituted protein obtained at 1.5 Å resolution reveals tight incorporation of the complex into the myoglobin matrix at pH 8.5, the optimized pH value for the highest turnover number of hydroxylation of ethylbenzene. The protein generates a spectroscopically detectable two-electron oxidative intermediate in a reaction with peracid, which has a half-life up to 38 s at 10 °C. Electron paramagnetic resonance spectra of the intermediate with perpendicular and parallel modes are silent, indicating formation of a low-spin Mn-oxo species. In addition, the Mn-oxo species is capable of promoting the hydroxylation of sodium 4-ethylbenzenesulfonate under single turnover conditions with an apparent second-order rate constant of 2.0 M s at 25 °C. Furthermore, the higher bond dissociation enthalpy of the substrate decreases the rate constant, in support of the proposal that the H-abstraction is one of the rate-limiting steps. The present engineered myoglobin serves as an artificial metalloenzyme for inert C-H bond activation via a high-valent metal species similar to the species employed by native monooxygenases such as cytochrome P450.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.