The kinase TBK1 responds to microbial stimuli and mediates type I interferon (IFN-I) induction. We show that TBK1 is also a central mediator of growth factor signaling; this function relies on a specific adaptor, TBK-binding protein 1 (TBKBP1). TBKBP1 recruits TBK1 to PKCθ via a scaffold protein, Card10, which allows PKCθ to phosphorylate TBK1 at serine-716, a crucial step for TBK1 activation by growth factors but not by innate immune stimuli. While the TBK1/ TBKBP1 signaling axis is dispensable for IFN-I induction, it mediates mTORC1 activation and oncogenesis. Lung epithelial cell-conditional deletion of either TBK1 or TBKBP1 inhibits tumorigenesis in a mouse model of lung cancer. In addition to promoting tumor growth, the TBK1/TBKBP1 axis facilitates tumor-mediated immunosuppression by a mechanism involving induction of the checkpoint molecule PD-L1 and stimulation of glycolysis. These findings suggest a PKCθ-TBKBP1-TBK1 growth factor signaling axis mediating both tumor growth and immunosuppression.
Metabolic reprograming towards aerobic glycolysis is a pivotal mechanism shaping immune responses. Here we show deficiency in NF-κB-inducing kinase (NIK) impairs glycolysis induction, rendering CD8 + effector T cells hypofunctional in tumor microenvironment. Conversely, ectopic expression of NIK promotes CD8 + T cell metabolism and effector function, thereby profoundly enhancing antitumor immunity and improving the efficacy of T cell adoptive therapy. NIK regulates T cell metabolism via an NF-κB-independent mechanism that involves stabilization of hexokinase 2 (HK2), a rate-limiting enzyme of the glycolytic pathway. NIK prevents autophagic degradation of HK2 through controlling cellular ROS levels, which in turn involves modulation of glucose-6-phosphate dehydrogenase (G6PD), an enzyme mediating production of the antioxidant NADPH. We show that the G6PD-NADPH redox system is important for HK2 stability and metabolism in activated T cells. These findings establish NIK as a pivotal regulator of T cell metabolism and highlight a posttranslational mechanism of metabolic regulation.
The role of mitochondria in cancer formation and progression has been studied extensively, but much remains to be understood about this complex relationship. Mitochondria regulate many processes that are known to be altered in cancer cells, from metabolism to oxidative stress to apoptosis. Here, we review the evolving understanding of the role of mitochondria in cancer cells, and highlight key evidence supporting the role of mitochondria in cancer immune evasion and the effects of mitochondria-targeted antitumor therapy. Also considered is how knowledge of the role of mitochondria in cancer can be used to design and improve cancer therapies, particularly immunotherapy and radiation therapy. We further offer critical insights into the mechanisms by which mitochondria influence tumor immune responses, not only in cancer cells but also in immune cells. Given the central role of mitochondria in the complex interactions between cancer and the immune system, high priority should be placed on developing rational strategies to address mitochondria as potential targets in future preclinical and clinical studies. We believe that targeting mitochondria may provide additional opportunities in the development of novel antitumor therapeutics.
The molecular mechanisms that fine tune TLRs responses need to be fully elucidated. Protein phosphatase-1 (PP1) has been shown to be important in cell death and differentiation. However, the roles of PP1 in TLR-triggered immune response remain unclear. In this study, we demonstrate that PP1 inhibits the activation of the MAPK and NF-κB pathway and the production of TNF-α, IL-6 in macrophages triggered by TLR3, TLR4, and TLR9 in a phosphatase-dependent manner. Conversely, PP1 knockdown increases TLRs-triggered signaling and proinflammatory cytokine production. Tautomycetin, a specific inhibitor of PP1, aggravates LPS-induced endotoxin shock in mice. We further demonstrate that PP1 negatively regulates TLR-triggered signaling by targeting TGF-β–activated kinase 1 (TAK1) serine 412 (Ser412) phosphorylation, which is required for activation of TAK1-mediated IL-1R and TLR signaling. Mutation of TAK1 Serine 412 to alanine (S412A) significantly inhibits TLR/IL-1R–triggered NF-κB and MAPK activation and induction of proinflammatory cytokines in macrophage and murine embryonic fibroblast cells. DNA damage-inducible protein 34 (GADD34) specifies PP1 to dephosphorylate TAK1 at Ser412. GADD34 depletion abolished the interaction between TAK1 and PP1, and it relieved PP1 overexpression-induced inhibition of TLRs signaling and proinflammatory cytokine production. In addition, knockdown of GADD34 significantly promotes TLR-induced TAK1 Ser412 phosphorylation, downstream NF-κB and MAPK activation, and proinflammatory cytokine production. Therefore, PP1, as a physiologic inhibitor, together with its regulatory subunit GADD34, tightly controls TLR-induced TAK1 Ser412 phosphorylation, preventing excessive activation of TLRs and protecting the host from overwhelmed inflammatory immune responses.
Background: Understanding of molecular mechanism of TAK1 activation is incomplete. Results: PKAC␣ and PRKX phosphorylate TAK1 at serine 412 to regulate TAK1 activation in the IL-1 receptor (IL-1R) and Toll-like receptor (TLR) signaling pathways. Conclusion: TAK1 activation requires phosphorylation by PKAC␣ and PRKX. Significance: This study advanced our understanding of the molecular mechanism of TAK1 activation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.