In this paper, we report a capillary-based Mach–Zehnder (M–Z) interferometer that could be used for precise detection of variations in refractive indices of gaseous samples. The sensing mechanism is quite straightforward. Cladding and core modes of a capillary are simultaneously excited by coupling coherent laser beams to the capillary cladding and core, respectively. An interferogram would be generated as the light transmitted from the core interferes with the light transmitted from the cladding. Variations in the refractive index of the air filling the core lead to variations in the phase difference between the core and cladding modes, thus shifting the interference fringes. Using a photodiode together with a narrow slit, we could interrogate the fringe shifts. The resolution of the sensor was found to be ~5.7 × 10−8 RIU (refractive index unit), which is comparable to the highest resolution obtained by other interferometric sensors reported in previous studies. Finally, we also analyze the temperature cross sensitivity of the sensor. The main goal of this paper is to demonstrate that the ultra-sensitive sensing of gas refractive index could be realized by simply using a single capillary fiber rather than some complex fiber-optic devices such as photonic crystal fibers or other fiber-optic devices fabricated via tricky fiber processing techniques. This capillary sensor, while featuring an ultrahigh resolution, has many other advantages such as simple structure, ease of fabrication, straightforward sensing principle, and low cost.
We demonstrate a dual-core fiber-based Mach–Zehnder interferometer that could be used for precise detection of variations in refractive indices of gaseous samples. The fiber used here have a solid germanium-doped silica core and an air core that allows gases to flow through. Coherent laser beams are coupled to the two cores, respectively, and thus excite guiding modes thereby. Interferogram would be produced as the light transmitted from the dual cores interferes. Variations in refractive index of the hollow core lead to variations in phase difference between the modes in the two cores, thus shifting the interference fringes. The fringe shifts can be then interrogated by a photodiode together with a narrow slit in front. The resolution of the sensor was found to be ~1 × 10−8 RIU, that is comparable to the highest resolution obtained by other fiber sensors reported in previous literatures. Other advantages of our sensor include very low cost, high sensitivity, straightforward sensing mechanism, and ease of fabrication.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.