The unique tumor microenvironment (TME) facilitates cancer proliferation and metastasis, and it is hard to cure cancer completely via monotherapy. Herein, a multifunctional cascade bioreactor based on hollow mesoporous Cu2MoS4 (CMS) loaded with glucose oxidase (GOx) is constructed for synergetic cancer therapy by chemo‐dynamic therapy (CDT)/starvation therapy/phototherapy/immunotherapy. The CMS harboring multivalent elements (Cu1+/2+, Mo4+/6+) exhibit Fenton‐like, glutathione (GSH) peroxidase‐like and catalase‐like activity. Once internalized into the tumor, CMS could generate ·OH for CDT via Fenton‐like reaction and deplete overexpressed GSH in TME to alleviate antioxidant capability of the tumors. Moreover, under hypoxia TME, the catalase‐like CMS could react with endogenous H2O2 to generate O2 for activating the catalyzed oxidation of glucose by GOx for starvation therapy accompanied with the regeneration of H2O2. The regenerated H2O2 can devote to Fenton‐like reaction for realizing GOx‐catalysis‐enhanced CDT. Meanwhile, the CMS under 1064 nm laser irradiation shows remarkable tumor‐killing ability by phototherapy due to its excellent photothermal conversion efficiency (η = 63.3%) and cytotoxic superoxide anion (·O2−) generation performance. More importantly, the PEGylated CMS@GOx‐based synergistic therapy combined with checkpoint blockade therapy could elicit robust immune responses for both effectively ablating primary tumors and inhibiting cancer metastasis.
Despite the widespread applications of manganese oxide nanomaterials (MONs) in biomedicine, the intrinsic immunogenicity of MONs is still unclear. MnOx nanospikes (NSs) as tumor microenvironment (TME)‐responsive nanoadjuvants and immunogenic cell death (ICD) drugs are proposed for cancer nanovaccine‐based immunotherapy. MnOx NSs with large mesoporous structures show ultrahigh loading efficiencies for ovalbumin and tumor cell fragment. The combination of ICD via chemodynamic therapy and ferroptosis inductions, as well as antigen stimulations, presents a better synergistic immunopotentiation action. Furthermore, the obtained nanovaccines achieve TME‐responsive magnetic resonance/photoacoustic dual‐mode imaging contrasts, while effectively inhibiting primary/distal tumor growth and tumor metastasis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.