We have simulated QCD using 2 þ 1 flavors of domain wall quarks and the Iwasaki gauge action on a ð2:74 fmÞ 3 volume with an inverse lattice scale of a À1 ¼ 1:729ð28Þ GeV. The up and down (light) quarks are degenerate in our calculations and we have used four values for the ratio of light quark masses to the strange (heavy) quark mass in our simulations: 0.217, 0.350, 0.617, and 0.884. We have measured pseudoscalar meson masses and decay constants, the kaon bag parameter B K , and vector meson couplings. We have used SU(2) chiral perturbation theory, which assumes only the up and down quark masses are small, and SU(3) chiral perturbation theory to extrapolate to the physical values for the light quark masses. While next-to-leading order formulas from both approaches fit our data for light quarks, we find the higher-order corrections for SU(3) very large, making such fits unreliable. We also find that SU(3) does not fit our data when the quark masses are near the physical strange quark mass. Thus, we rely on SU(2) chiral perturbation theory for accurate results. We use the masses of the baryon, and the and K mesons to set the lattice scale and determine the quark masses. We then find f ¼ 124:1ð3:6Þ stat  ð6:9Þ syst MeV, f K ¼ 149:6ð3:6Þ stat ð6:3Þ syst MeV, and f K =f ¼ 1:205ð0:018Þ stat ð0:062Þ syst . Using nonperturbative renormalization to relate lattice regularized quark masses to regularization independent momentum scheme masses, and perturbation theory to relate these to MS, we find m MS ud ð2 GeVÞ ¼ 3:72ð0:16Þ stat ð0:33Þ ren ð0:18Þ syst MeV, m MS s ð2 GeVÞ ¼ 107:3ð4:4Þ stat ð9:7Þ ren ð4:9Þ syst MeV, and mud : ms ¼ 1:28:8ð0:4Þ stat ð1:6Þ syst . For the kaon bag parameter, we find B MS K ð2 GeVÞ ¼ 0:524ð0:010Þ stat ð0:013Þ ren  ð0:025Þ syst . Finally, for the ratios of the couplings of the vector mesons to the vector and tensor currents (f V and f T V , respectively) in the MS scheme at 2 GeV we obtain f T =f ¼ 0:687ð27Þ; f T K à =f K à ¼ 0:712ð12Þ, and f T =f ¼ 0:750ð8Þ.
We calculate the light hadron spectrum in full QCD using two plus one flavor Asqtad sea quarks and domain wall valence quarks. Meson and baryon masses are calculated on a lattice of spatial size L ≈ 2.5 fm, and a lattice spacing of a ≈ 0.124 fm, for pion masses as light as mπ ≈ 300 MeV, and compared with the results by the MILC collaboration with Asqtad valence quarks at the same lattice spacing. Two-and three-flavor chiral extrapolations of the baryon masses are performed using both continuum and mixed-action heavy baryon chiral perturbation theory. Both the threeflavor and two-flavor functional forms describe our lattice results, although the low-energy constants from the next-to-leading order SU (3) fits are inconsistent with their phenomenological values. Nextto-next-to-leading order SU (2) continuum formulae provide a good fit to the data and yield and extrapolated nucleon mass consistent with experiment, but the convergence pattern indicates that even our lightest pion mass may be at the upper end of the chiral regime. Surprisingly, our nucleon masses are essentially lineaer in mπ over our full range of pion masses, and we show this feature is common to all recent dynamical calculations of the nucleon mass. The origin of this linearity is not presently understood, and lighter pion masses and increased control of systematic errors will be needed to resolve this puzzling behavior.
We present physical results obtained from simulations using 2+1 flavors of domain wall quarks and the Iwasaki gauge action at two values of the lattice spacing a, (a −1 = 1.73 (3) GeV and a −1 = 2.28 (3) GeV). On the coarser lattice, with 24 3 × 64 × 16 points (where the 16 corresponds to L s , the extent of the 5 th dimension inherent in the domain wall fermion (DWF) formulation
We present high statistics results for the structure of the nucleon from a mixed-action calculation using 2+1 flavors of asqtad sea and domain wall valence fermions. We perform extrapolations of our data based on different chiral effective field theory schemes and compare our results with available information from phenomenology. We discuss vector and axial form factors of the nucleon, moments of generalized parton distributions, including moments of forward parton distributions, and implications for the decomposition of the nucleon spin.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.