The unexpected, non-enzymatic S-glycosylation of cysteine residues in various proteins by per-O-acetylated monosaccharides is described. This artificial S-glycosylation greatly compromises the specificity and validity of metabolic glycan labeling in living cells by per-O-acetylated azido and alkynyl sugars, which has been overlooked in the field for decades. It is demonstrated that the use of unacetylated unnatural sugars can avoid the artifact formation and a corrected list of O-GlcNAcylated proteins and O-GlcNAc sites in HeLa cells has been assembled by using N-azidoacetylgalactosamine (GalNAz).
Transcriptome-wide identification of RNA-binding proteins (RBPs) is a prerequisite for understanding the posttranscriptional gene regulation networks. However, proteomic profiling of RBPs has been mostly limited to polyadenylated mRNA-binding proteins, leaving RBPs on nonpoly(A) RNAs, including most noncoding RNAs (ncRNAs) and pre-mRNAs, largely undiscovered. Here we present a click chemistry-assisted RNA interactome capture (CARIC) strategy, which enables unbiased identification of RBPs, independent of the polyadenylation state of RNAs. CARIC combines metabolic labeling of RNAs with an alkynyl uridine analog and in vivo RNA-protein photocross-linking, followed by click reaction with azide-biotin, affinity enrichment, and proteomic analysis. Applying CARIC, we identified 597 RBPs in HeLa cells, including 130 previously unknown RBPs. These newly discovered RBPs can likely bind ncRNAs, thus uncovering potential involvement of ncRNAs in processes previously unknown to be ncRNA-related, such as proteasome function and intermediary metabolism. The CARIC strategy should be broadly applicable across various organisms to complete the census of RBPs.
The unexpected, non‐enzymatic S‐glycosylation of cysteine residues in various proteins by per‐O‐acetylated monosaccharides is described. This artificial S‐glycosylation greatly compromises the specificity and validity of metabolic glycan labeling in living cells by per‐O‐acetylated azido and alkynyl sugars, which has been overlooked in the field for decades. It is demonstrated that the use of unacetylated unnatural sugars can avoid the artifact formation and a corrected list of O‐GlcNAcylated proteins and O‐GlcNAc sites in HeLa cells has been assembled by using N‐azidoacetylgalactosamine (GalNAz).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.