The DNA base excision repair pathway is responsible for the repair of DNA damage caused by oxidation/alkylation and protects cells against the effects of endogenous and exogenous agents. Removal of the damaged base by creates a baseless (AP) site. AP endonuclease1 (Ape1) acts upon this site to continue the BER pathway repair. Failure to repair baseless sites leads to DNA strand breaks and cytotoxicity. In addition to Ape1's repair role, it also functions as a major redox signaling factor to reduce and activate transcription factors such as AP1, p53, HIF-1α and others which control the expression of genes important for cell survival and cancer promotion and progression. Thus the Ape1 protein interacts with proteins involved in DNA repair, growth signaling pathways and pathways involved in tumor promotion and progression. While knockdown studies using siRNA have been informative in studying the role of Ape1 in both normal and cancer cells, knocking down Ape1 does not reveal the individual role of Ape1's redox or repair functions. The identification of small molecule inhibitors of specific Ape1 functions is critical for mechanistic studies and translational applications. Here we discuss small molecule inhibition of Ape1 redox and its effect on both cancer and endothelial cells.
Human apurinic/apyrimidinic endonuclease (hApe1) encodes two important functional activities: an essential base excision repair (BER) activity and a redox activity that regulates expression of a number of genes through reduction of their transcription factors, AP-1, NFkappaB, HIF-1alpha, CREB, p53 and others. The BER function is highly conserved from prokaryotes (E. coli exonuclease III) to humans (hApe1). Here, we provide evidence supporting a redox function unique to mammalian Apes. An evolutionary analysis of Ape sequences reveals that, of the 7 Cys residues, Cys 93, 99, 208, 296, and 310 are conserved in both mammalian and non-mammalian vertebrate Apes, while Cys 65 is unique to mammalian Apes. In the zebrafish Ape (zApe), selected as the vertebrate sequence most distant from human, the residue equivalent to Cys 65 is Thr 58. The wild-type zApe enzyme was tested for redox activity in both in vitro EMSA and transactivation assays and found to be inactive, similar to C65A hApe1. Substitution of Thr 58 with Cys in zApe, however, resulted in a redox active enzyme, suggesting that a Cys residue in this position is indeed critical for redox function. In order to further probe differences between redox active and inactive enzymes, we have determined the crystal structures of vertebrate redox inactive enzymes, the C65A human Ape1 enzyme and the zApe enzyme at 1.9 and 2.3A, respectively. Our results provide new insights on the redox function and highlight a dramatic gain-of-function activity for Ape1 in mammals not found in non-mammalian vertebrates or lower organisms.
Pancreatic cancer is a largely incurable disease, and increasing evidence supports strategies targeting multiple molecular mediators of critical functions of pancreatic ductal adenocarcinoma cells. Intracellular redox state modulates the activity of various signal transduction pathways and biological processes, including cell survival, drug resistance and responsiveness to microenvironmental factors. Recently, it has been shown that the transcription factor STAT3 is under redox control, but the mechanisms involved in its regulation are unknown. Here, we demonstrate for the first time that STAT3 DNA binding and transcriptional activity is directly regulated by the redox function of the APE1/Ref-1 endonuclease, using overexpression and redox-specific mutational strategies, and gene knockdown. Also, pharmacological blockade of APE1/Ref-1 by the redox-selective inhibitor E3330 abrogates STAT3 DNA binding. Since APE1/Ref-1 also exerts redox control on other cancer-associated transcription factors, we assessed the impact of dual-targeting of STAT3 signaling and APE1/Ref-1 redox on pancreatic cancer cell functions. We observed that disruption of APE1/Ref-1 redox activity synergizes with STAT3 blockade to potently inhibit the proliferation and viability of human PDAC cells. Mechanistically, we show that STAT3–APE1/Ref-1 dual targeting promotes marked tumor cell apoptosis, with engagement of caspase-3 signaling, which are significantly increased in comparison to the effects triggered by single target blockade. Also, we show that STAT3–APE1/Ref-1 dual blockade results in significant inhibition of tumor cell migration. Overall, this work demonstrates that the transcriptional activity of STAT3 is directly regulated by the redox function of APE1/Ref-1, and that concurrent blockade of STAT3 and APE1/Ref-1 redox synergize effectively inhibit critical PDAC cell functions.
Redox reactions are known to regulate many important cellular processes. In this review, we focus on the role of redox regulation in DNA repair both in direct regulation of specific DNA repair proteins as well as indirect transcriptional regulation. A key player in the redox regulation of DNA repair is the base excision repair enzyme apurinic/apyrimidinic endonuclease 1 (APE1) in its role as a redox factor. APE1 is reduced by the general redox factor thioredoxin, and in turn reduces several important transcription factors that regulate expression of DNA repair proteins. Finally, we consider the potential for chemotherapeutic development through the modulation of APE1's redox activity and its impact on DNA repair. Antioxid. Redox Signal. 12, 1247-1269.
Pancreatic ductal adenocarcinoma (PDAC) is the 4th leading cause of cancer-related mortality in the United States. Aggressive treatment regimens have not changed the disease course, and the median survival has just recently reached a year. Several mechanisms are proposed to play a role in PDAC therapeutic resistance, including hypoxia, which creates a more aggressive phenotype with increased metastatic potential and impaired therapeutic efficacy. AP Endonuclease-1/Redox Effector Factor 1 (APE1/Ref-1) is a multi-functional protein possessing a DNA repair function in base excision repair and the ability to reduce oxidized transcription factors, enabling them to bind to their DNA target sequences. APE1/Ref-1 regulates several transcription factors involved in survival mechanisms, tumor growth, and hypoxia signaling. Here, we explore the mechanisms underlying PDAC cell responses to hypoxia and modulation of APE1/Ref-1 redox signaling activity, which regulates the transcriptional activation of hypoxia inducible factor 1 alpha (HIF1α). Carbonic anhydrase IX (CA9) is regulated by HIF1α and functions as part of the cellular response to hypoxia to regulate intracellular pH, thereby promoting cell survival. We hypothesized that modulating APE1/Ref-1 function will block activation of downstream transcription factors, STAT3 and HIF1α, interfering with hypoxia-induced gene expression. We demonstrate APE1/Ref-1 inhibition in patient-derived and established PDAC cells results in decreased HIF1α–mediated induction of CA9. Furthermore, an ex vivo 3D tumor co-culture model demonstrates dramatic enhancement of APE1/Ref-1-induced cell killing upon dual-targeting of APE1/Ref-1 and CA9. Both APE1/Ref-1 and CA9 are under clinical development, therefore these studies have the potential to direct novel PDAC therapeutic treatment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.