Major depressive disorder (MDD), also referred to as depression, is one of the most common psychiatric disorders with a high economic burden. The etiology of depression is still not clear, but it is generally believed that MDD is a multifactorial disease caused by the interaction of social, psychological, and biological aspects. Therefore, there is no exact pathological theory that can independently explain its pathogenesis, involving genetics, neurobiology, and neuroimaging. At present, there are many treatment measures for patients with depression, including drug therapy, psychotherapy, and neuromodulation technology. In recent years, great progress has been made in the development of new antidepressants, some of which have been applied in the clinic. This article mainly reviews the research progress, pathogenesis, and treatment of MDD.
RNA is essential for all kingdoms of life and exerts important functions beyond transferring genetic information from DNA to protein. With the advent of the state-of-the-art deep sequencing technology, a large portion of noncoding transcripts in eukaryotic genomes has been broadly identified. Among them, long noncoding RNAs (lncRNAs) have been emerged as a new class of RNA molecules that have regulatory potential in a variety of physiological and pathological processes. Here we summarize recent research progresses that have been made by scientists in China on lncRNAs, including their biogenesis, functional implication and the underlying mechanism of action at the current stage. V C 2016 IUBMB Life, 68(11): [887][888][889][890][891][892][893] 2016
Microbiota-host interaction plays an important role in cancer predisposing, initiation, progression, and response to therapy. Here, we explored the composition of lung tissue microbiota in 143 Chinese patients through conducting 16S rRNA gene sequencing, while TP53 mutation in tumor cells was assessed simultaneously. We found PAH-degrading microbes were more abundant in lung tumor microbiota from smokers. Furthermore, TP53 mutation was more prevalent in smokers, and TP53-mutated tumor harbored more Massilia, as well as Acidovorax that was also capable of degrading PAH. Further analysis showed DNA recombination and repair pathway was enriched in microbiota of smokers, which was convergent to the alteration occurred in tumor cells. Meanwhile, the microbiota of TP53-mutated tumor also exhibited dysregulation of p53 signaling pathway. Our results provided insights into the association of lung commensal microbes with tobacco exposure and host gene mutation, suggesting microbiota and tumor cells might undergo convergent alteration and mutually benefit each other.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.