Carbazoles have attracted high interest among synthetic chemists due to their unique structural features and potential pharmacological activities. Compared to linear aryliodoniums, cyclic diphenyleneiodoniums are more inert and have not attracted much attention to their application as building blocks. Employing our synthetic strategy, diversified carbazoles can be efficiently obtained from a single cyclic diphenyleneiodonium under mild conditions. The reactions catalyzed by copper(II) acetate have provided a variety of carbazoles in modest to good yields with a broad range of amines including anilines, aliphatic amines and sulfonamides. Moreover, one of the obtained carbazoles has displayed an outstanding ability to protect HT‐22 neuronal cells from the damage induced by neurotoxins glutamate and homocysteic acid.magnified image
Current therapies against CNS disorders are only able to attenuate the symptoms and fail in delaying or preventing disease progression and new approaches with disease-modifying activity are desperately needed. The dramatic effects of fasudil in animal models and/or clinical applications of CNS disorders make it a promising strategy to overcome CNS disorders in human beings. Given the complex pathology of CNS disorders, further efforts are necessary to develop multifunctional fasudil derivatives or combination strategies with other drugs in order to exert more powerful effects with minimized adverse effects in the combat of CNS disorders.
Polydatin, a glucoside of resveratrol, has been reported to possess potent antioxidative effects. In the present study, we aimed to investigate the effects of polydatin in bone marrow-derived mesenchymal stem cells (BMSCs) death caused by hydrogen peroxide (H2O2), imitating the microenvironment surrounding transplanted cells in the injured spinal cord in vitro. In our study, MTT results showed that polydatin effectively prevented the decrease of cell viability caused by H2O2. Hochest 33258, Annexin V-PI, and Western blot assay showed H2O2-induced apoptosis in BMSCs, which was attenuated by polydatin. Further studies indicated that polydatin significantly protects BMSCs against apoptosis due to its antioxidative effects and the regulation of Nrf 2/ARE pathway. Taken together, our results indicate that polydatin could be used in combination with BMSCs for the treatment of spinal cord injury by improving the cell survival and oxidative stress microenvironments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.