We present new observations of the planet β Pictoris b from 2018 with GPI, the first GPI observations following conjunction. Based on these new measurements, we perform a joint orbit fit to the available relative astrometry from ground-based imaging, the Hipparcos Intermediate Astrometric Data (IAD), and the Gaia DR2 position, and demonstrate how to incorporate the IAD into direct imaging orbit fits. We find a mass consistent with predictions of hot-start evolutionary models and previous works following similar methods, though with larger uncertainties: 12.8 +5.3 −3.2 M Jup . Our eccentricity determination of 0.12 +0.04 −0.03 disfavors circular orbits. We consider orbit fits to several different imaging datasets, and find generally similar posteriors on the mass for each combination of imaging data. Our analysis underscores the importance of performing joint fits to the absolute and relative astrometry simultaneously, given the strong covariance between orbital elements. Time of conjunction is well constrained within 2.8 days of 2017 September 13, with the star behind the planet's Hill sphere between 2017 April 11 and 2018 February 16 (± 18 days). Following the recent radial velocity detection of a second planet in the system, β Pic c, we perform additional two-planet fits combining relative astrometry, absolute astrometry, and stellar radial velocities. These joint fits find a significantly smaller mass for the imaged planet β Pic b, of 8.0 ± 2.6 M Jup , in a somewhat more circular orbit. We expect future ground-based observations to further constrain the visual orbit and mass of the planet in advance of the release of Gaia DR4.
HD 106906 is a 15 Myr old short-period (49 days) spectroscopic binary that hosts a wide-separation (737 au) planetary-mass (
) common proper motion companion, HD 106906 b. Additionally, a circumbinary debris disk is resolved at optical and near-infrared wavelengths that exhibits a significant asymmetry at wide separations that may be driven by gravitational perturbations from the planet. In this study we present the first detection of orbital motion of HD 106906 b using Hubble Space Telescope images spanning a 14 yr period. We achieve high astrometric precision by cross-registering the locations of background stars with the Gaia astrometric catalog, providing the subpixel location of HD 106906 that is either saturated or obscured by coronagraphic optical elements. We measure a statistically significant 31.8 ± 7.0 mas eastward motion of the planet between the two most constraining measurements taken in 2004 and 2017. This motion enables a measurement of the inclination between the orbit of the planet and the inner debris disk of either
deg or
deg, depending on the true orientation of the orbit of the planet. There is a strong negative correlation between periastron and mutual inclination; orbits with smaller periastra are more misaligned with the disk plane. With a periastron of
au, HD 106906 b is likely detached from the planetary region within 100 au radius, showing that a Planet Nine–like architecture can be established very early in the evolution of a planetary system.
We present a revision to the astrometric calibration of the Gemini Planet Imager (GPI), an instrument designed to achieve the high contrast at small angular separations necessary to image substellar and planetary-mass companions around nearby, young stars. We identified several issues with the GPI Data Reduction Pipeline (DRP) that significantly affected the determination of angle of north in reduced GPI images. As well as introducing a small error in position angle measurements for targets observed at small zenith distances, this error led to a significant error in the previous astrometric calibration that has affected all subsequent astrometric measurements. We present a detailed description of these issues, and how they were corrected. We reduced GPI observations of calibration binaries taken periodically since the instrument was commissioned in 2014 using an updated version of the DRP. These measurements were compared to observations obtained with the NIRC2 instrument on Keck II, an instrument with an excellent astrometric calibration, allowing us to derive an updated plate scale and north offset angle for GPI. This revised astrometric calibration should be used to calibrate all measurements obtained with GPI for the purposes of precision astrometry.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.