Sodium ion batteries are attracting ever-increasing attention for the applications in large/grid scale energy storage systems. However, the research on novel Na-storage electrode materials is still in its infancy, and the cycling stability, specific capacity, and rate capability of the reported electrode materials cannot satisfy the demands of practical applications. Herein, a high performance Sb(2)O(3) anode electrochemically reacted via the reversible conversion-alloying mechanism is demonstrated for the first time. The Sb(2)O(3) anode exhibits a high capacity of 550 mAh g(-1) at 0.05 A g(-1) and 265 mAh g(-1) at 5 A g(-1). A reversible capacity of 414 mAh g(-1) at 0.5 A g(-1) is achieved after 200 stable cycles. The synergistic effect involving conversion and alloying reactions promotes stabilizing the structure of the active material and accelerating the kinetics of the reaction. The mechanism may offer a well-balanced approach for sodium storage to create high capacity and cycle-stable anode materials.
A novel composite hydrogel was prepared via UV irradiation copolymerization of acrylic acid and maize bran (MB) in the presence of composite initiator (2,2-dimethoxy-2-phenylacetophenone and ammonium persulfate) and cross-linker (N,N'-methylenebis(acrylamide)). Under the optimized conditions, maize bran-poly(acrylic acid) was obtained (2507 g g(-1) in distilled water and 658 g g(-1) in 0.9 wt % NaCl solution). Effects of granularity, salt concentration, and various cations and anions on water absorbency were investigated. It was found that swelling was extremely sensitive to the ionic strength and cation and anion type. Swelling kinetics and water diffusion mechanism in distilled water were also discussed. Moreover, the product showed excellent water retention capability under the condition of high temperature or high pressure. The salt sensitivity, good water absorbency, and excellent water retention capability of the hydrogels give this intelligentized polymer wide potential applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.