SummaryVirtually the entire population of the globally ‘Vulnerable’ Swan Goose Anser cygnoides winters in the Yangtze floodplain. Historically, the species was widely distributed throughout the floodplain but now approximately 95% of the population is confined to three closely-situated wetlands in Anhui and Jiangxi Provinces. Recent counts indicate that at one of these sites, Shengjin Lake (in Anhui), a decline of about 10,000–20,000 birds, to about 1,000 currently, has taken place during the last five years. The likely cause of the decline in Swan Goose abundance at Shengjin Lake is the recent decrease in submerged vegetation, particularly tuber-producing Vallisneria which is the species’s main food; this decrease has been linked with the introduction of intensive aquaculture in the main areas used by Swan Geese within the lake. Earlier range contractions in the Yangtze floodplain may also be linked to reductions in submerged vegetation cover at other sites, where intensive aquaculture has also been implicated. Changes in lake hydrology following construction of the Three Gorges Dam may also have adversely affected submerged vegetation productivity. Key information needs for the effective implementation of conservation measures for Swan Goose include an understanding of (1) the fitness consequences of Swan Geese being forced to switch to different foods; (2) how aquaculture can be managed to minimise impacts on submerged vegetation; (3) the impact of changing lake hydrology on key Swan Goose food plants; and (4) the optimal management of wetlands to ensure that adequate food is both produced during the summer period and is available throughout the winter.
SummaryCount data show that wintering Greater White-fronted Goose Anser albifrons numbers in their Chinese stronghold (the Yangtze River catchment) have fallen from about 140,000 in the late 1980s and early 1990s to c.18,000 now, despite increases in the overall flyway population (mostly wintering in South Korea and Japan). Declines have occurred in Jiangxi, but most markedly in Hunan (predominantly at East Dongting Lake) where the decline has been steady since 2003/2004, with few left from 2008/2009 onwards. Numbers have increased substantially in Anhui (predominantly at Shengjin Lake), which now supports more Greater White-fronted Geese than Jiangxi and Hunan combined. The species appears a habitat specialist in China, confined to grazing short-sward recessional Carex sedge meadows. At East Dongting Lake, reductions in Greater White-fronted Geese numbers correlated with declines in availability of suitable sedge swards, caused by earlier water table recession, which in recent years has meant swards were too tall for geese to utilise from their arrival in autumn. The hydrological changes are most probably due to the commissioning of the Three Gorges Dam in mid-2003. At Shengjin Lake, the increases may be due to recent stable first exposure dates and slow water recession rates which favour short Carex swards attractive to geese; high buffalo grazing density at this lake may also assist in maintaining suitable sward heights. These hypotheses require investigation.
BackgroundMigrants have been hypothesised to use different migration strategies between seasons: a time-minimization strategy during their pre-breeding migration towards the breeding grounds and an energy-minimization strategy during their post-breeding migration towards the wintering grounds. Besides season, we propose body size as a key factor in shaping migratory behaviour. Specifically, given that body size is expected to correlate negatively with maximum migration speed and that large birds tend to use more time to complete their annual life-history events (such as moult, breeding and migration), we hypothesise that large-sized species are time stressed all year round. Consequently, large birds are not only likely to adopt a time-minimization strategy during pre-breeding migration, but also during post-breeding migration, to guarantee a timely arrival at both the non-breeding (i.e. wintering) and breeding grounds.MethodsWe tested this idea using individual tracks across six long-distance migratory shorebird species (family Scolopacidae) along the East Asian-Australasian Flyway varying in size from 50 g to 750 g lean body mass. Migration performance was compared between pre- and post-breeding migration using four quantifiable migratory behaviours that serve to distinguish between a time- and energy-minimization strategy, including migration speed, number of staging sites, total migration distance and step length from one site to the next.ResultsDuring pre- and post-breeding migration, the shorebirds generally covered similar distances, but they tended to migrate faster, used fewer staging sites, and tended to use longer step lengths during pre-breeding migration. These seasonal differences are consistent with the prediction that a time-minimization strategy is used during pre-breeding migration, whereas an energy-minimization strategy is used during post-breeding migration. However, there was also a tendency for the seasonal difference in migration speed to progressively disappear with an increase in body size, supporting our hypothesis that larger species tend to use time-minimization strategies during both pre- and post-breeding migration.ConclusionsOur study highlights that body size plays an important role in shaping migratory behaviour. Larger migratory bird species are potentially time constrained during not only the pre- but also the post-breeding migration. Conservation of their habitats during both seasons may thus be crucial for averting further population declines.Electronic supplementary materialThe online version of this article (10.1186/s40462-017-0114-0) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.