BackgroundExosomes, endosome-derived membrane microvesicles, contain specific RNA transcripts that are thought to be involved in cell-cell communication. These RNA transcripts have great potential as disease biomarkers. To characterize exosomal RNA profiles systemically, we performed RNA sequencing analysis using three human plasma samples and evaluated the efficacies of small RNA library preparation protocols from three manufacturers. In all we evaluated 14 libraries (7 replicates).ResultsFrom the 14 size-selected sequencing libraries, we obtained a total of 101.8 million raw single-end reads, an average of about 7.27 million reads per library. Sequence analysis showed that there was a diverse collection of the exosomal RNA species among which microRNAs (miRNAs) were the most abundant, making up over 42.32% of all raw reads and 76.20% of all mappable reads. At the current read depth, 593 miRNAs were detectable. The five most common miRNAs (miR-99a-5p, miR-128, miR-124-3p, miR-22-3p, and miR-99b-5p) collectively accounted for 48.99% of all mappable miRNA sequences. MiRNA target gene enrichment analysis suggested that the highly abundant miRNAs may play an important role in biological functions such as protein phosphorylation, RNA splicing, chromosomal abnormality, and angiogenesis. From the unknown RNA sequences, we predicted 185 potential miRNA candidates. Furthermore, we detected significant fractions of other RNA species including ribosomal RNA (9.16% of all mappable counts), long non-coding RNA (3.36%), piwi-interacting RNA (1.31%), transfer RNA (1.24%), small nuclear RNA (0.18%), and small nucleolar RNA (0.01%); fragments of coding sequence (1.36%), 5′ untranslated region (0.21%), and 3′ untranslated region (0.54%) were also present. In addition to the RNA composition of the libraries, we found that the three tested commercial kits generated a sufficient number of DNA fragments for sequencing but each had significant bias toward capturing specific RNAs.ConclusionsThis study demonstrated that a wide variety of RNA species are embedded in the circulating vesicles. To our knowledge, this is the first report that applied deep sequencing to discover and characterize profiles of plasma-derived exosomal RNAs. Further characterization of these extracellular RNAs in diverse human populations will provide reference profiles and open new doors for the development of blood-based biomarkers for human diseases.
Background Extracellular microRNAs (miRNAs) embedded in circulating exosomes may serves as prognostic biomarkers in cancer. Objective To identify and evaluate plasma exosomal miRNAs for prognosis in castration-resistant prostate cancer (CRPC). Design, setting, and participants RNA sequencing was performed to identify candidate exosomal miRNAs associated with overall survival in a screening cohort of 23 CRPC patients. Candidate miRNAs were further evaluated for prognosis using quantitative real-time polymerase chain reaction in a follow-up cohort of 100 CRPC patients. Outcome measurements and statistical analysis Cox regression and Kaplan-Meier survival analyses were used to evaluate survival association using candidate miRNAs along with clinical prognostic factors. Results and limitations RNA sequencing in screening cohort generated approximately 6.80 million mappable reads per patient. Of those with normalized read counts ≥5, 43% were mapped to miRNAs for a total of 375 known and 57 novel miRNAs. Cox regression analysis identified an association of miR-1290, -1246, and -375 with overall survival (false discover rate <0.05). Of those, higher levels of miR-1290 and -375 were significantly associated with poor overall survival (p < 0.004) in the follow-up cohort. Incorporation of miR-1290/-375 into putative clinical prognostic factors-based models in CRPC stage significantly improved predictive performance with a time-dependent area under the curve increase from 0.66 to 0.73 (p = 6.57 × 10−6). Conclusions Plasma exosomal miR-1290 and miR-375 are promising prognostic biomarkers for CRPC patients. Prospective validation is needed for further development of these candidate miRNAs. Patient summary In this study, we evaluated whether small RNAs circulating in blood could be used to predict clinical outcomes in late-stage prostate cancer patients. We identified two blood-based small RNAs whose levels showed significant association with survival. Our results warrant further investigation because the noninvasive blood-based test has great potential in the management of late-stage prostate cancer.
Extracellular vesicles are selectively enriched in RNA that has potential as disease biomarkers. To systemically characterize circulating extracellular RNA (exRNA) profiles, we performed RNA sequencing analysis on plasma extracellular vesicles derived from 50 healthy individuals and 142 cancer patients. Of ~12.6 million raw reads for each individual, the number of mappable reads aligned to RNA references was ~5.4 million including miRNAs (~40.4%), piwiRNAs (~40.0%), pseudo-genes (~3.7%), lncRNAs (~2.4%), tRNAs (~2.1%), and mRNAs (~2.1%). By expression stability testing, we identified a set of miRNAs showing relatively consistent expression, which may serve as reference control for exRNA quantification. By performing multivariate analysis of covariance, we identified significant associations of these exRNAs with age, sex and different types of cancers. In particular, down-regulation of miR-125a-5p and miR-1343-3p showed an association with all cancer types tested (false discovery rate <0.05). We developed multivariate statistical models to predict cancer status with an area under the curve from 0.68 to 0.92 depending cancer type and staging. This is the largest RNA-seq study to date for profiling exRNA species, which has not only provided a baseline reference profile for circulating exRNA, but also revealed a set of RNA candidates for reference controls and disease biomarkers.
Extrachromosomal circular DNAs (eccDNAs) have been reported in most eukaryotes. However, little is known about the cell-free eccDNA profiles in circulating system such as blood. To characterize plasma cell-free eccDNAs, we performed sequencing analysis in 26 libraries from three blood donors and negative controls. We identified thousands of unique plasma eccDNAs in the three subjects. We observed proportional eccDNA increase with initial DNA input. The detected eccDNAs were also associated with circular DNA enrichment efficiency. Increasing the sequencing depth in an additional sample identified many more eccDNAs with highly heterogenous molecular structure. Size distribution of eccDNAs varied significantly from 31 bp to 19,989 bp. We found significantly higher GC content in smaller eccDNAs (<500 bp) than the larger ones (>500 bp) (p < 0.01). We also found an enrichment of eccDNAs at exons and 3′UTR (enrichment folds from 1.36 to 3.1) as well as the DNase hypersensitive sites (1.58–2.42 fold), H3K4Me1 (1.23–1.42 fold) and H3K27Ac (1.33–1.62 fold) marks. Junction sequence analysis suggested fundamental role of nonhomologous end joining mechanism during eccDNA formation. Further characterization of the extracellular eccDNAs in peripheral blood will facilitate understanding of their molecular mechanisms and potential clinical utilities.
BackgroundTreatment options for metastatic castrate-resistant prostate cancer (mCRPC) are limited and typically are centered on docetaxel-based chemotherapy. We previously reported that elevated miR-375 levels were significantly associated with poor overall survival of mCRPC patients. In this study, we evaluated if miR-375 induced chemo-resistance to docetaxel through regulating target genes associated with drug resistance.MethodsWe first compared miR-375 expression level between prostate cancer tissues and normal prostate tissues using data from The Cancer Genome Atlas (TCGA). To examine the role of miR-375 in docetaxel resistance, we transfected miR-375 using a pre-miRNA lentiviral vector and examined the effects of exogenously overexpressed miR-375 on cell growth in two prostate cancer cell lines, DU145 and PC-3. To determine the effect of overexpressed miR-375 on tumor growth and chemo-resistance in vivo, we injected prostate cancer cells overexpressing miR-375 into nude mice subcutaneously and evaluated tumor growth rate during docetaxel treatment. Lastly, we utilized qRT-PCR and Western blot assay to examine two miR-375 target genes, SEC23A and YAP1, for their expression changes after miR-375 transfection.ResultsBy examining 495 tumor tissues and 52 normal tissues from TCGA data, we found that compared to normal prostate, miR-375 was significantly overexpressed in prostate cancer tissues (8.45-fold increase, p value = 1.98E-23). Docetaxel treatment induced higher expression of miR-375 with 5.83- and 3.02-fold increases in DU145 and PC-3 cells, respectively. Interestingly, miR-375 appeared to play a dual role in prostate cancer proliferation. While miR-375 overexpression caused cell growth inhibition and cell apoptosis, elevated miR-375 also significantly reduced cell sensitivity to docetaxel treatment in vitro, as evidenced by decreased apoptotic cells. In vivo xenograft mouse study showed that tumors with increased miR-375 expression were more tolerant to docetaxel treatment, demonstrated by greater tumor weight and less apoptotic cells in miR-375 transfected group when compared to empty vector control group. In addition, we examined expression levels of the two miR-375 target genes (SEC23A and YAP1) and observed significant reduction in the expression at both protein and mRNA levels in miR-375 transfected prostate cancer cell lines. TCGA dataset analysis further confirmed the negative correlations between miR-375 and the two target genes (r = −0.62 and −0.56 for SEC23A and YAP1, respectively; p < 0.0001).ConclusionsmiR-375 is involved in development of chemo-resistance to docetaxel through regulating SEC23A and YAP1 expression. Our results suggest that miR-375 or its target genes, SEC23A or YAP1, might serve as potential predictive biomarkers to docetaxel-based chemotherapy and/or therapeutic targets to overcome chemo-resistance in mCRPC stage.Electronic supplementary materialThe online version of this article (doi:10.1186/s12943-016-0556-9) contains supplementary material, which is available to authorize...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.