In practical engineering applications, there is a high demand for inverting parameters for various materials, and obtaining monitoring data can be costly. Traditional inverse methods often involve tedious computational processes, require significant computational effort, and exhibit slow convergence speeds. The recently proposed Physics-Informed Neural Network (PINN) has shown great potential in solving inverse problems. Therefore, in this paper, we propose a transfer learning-based coupling of the Smoothed Finite Element Method (S-FEM) and PINN methods for the inversion of parameters in elastic-plasticity problems. The aim is to improve the accuracy and efficiency of parameter inversion for different elastic-plastic materials with limited data. High-quality small datasets were synthesized using S-FEM and subsequently combined with PINN for pre-training purposes. The parameters of the pre-trained model were saved and used as the initial state for the PINN model in the inversion of new material parameters. The inversion performance of the coupling of S-FEM and PINN is compared with the coupling of the conventional Finite Element Method (FEM) and PINN on a small data set. Additionally, we compared the efficiency and accuracy of both the transfer learning-based and non-transfer learning-based methods of the coupling of S-FEM and PINN in the inversion of different material parameters. The results show that: (1) our method performs well on small datasets, with an inversion error of essentially less than 2%; (2) our approach outperforms the coupling of conventional FEM and PINN in terms of both computational accuracy and computational efficiency; and (3) our approach is at least twice as efficient as the coupling of S-FEM and PINN without transfer learning, while still maintaining accuracy. Our method is well-suited for the inversion of different material parameters using only small datasets. The use of transfer learning greatly improves computational efficiency, making our method an efficient and accurate solution for reducing computational cost and complexity in practical engineering applications.
Boolean operations on geometric models are important in numerical simulation and serve as essential tools in the fields of computer-aided design and computer graphics. The accuracy of these operations is heavily influenced by finite precision arithmetic, a commonly employed technique in geometric calculations, which introduces numerical approximations. To ensure robustness in Boolean operations, numerical methods relying on rational numbers or geometric predicates have been developed. These methods circumvent the accumulation of rounding errors during computation, thus preserving accuracy. Nonetheless, it is worth noting that these approaches often entail more intricate operation rules and data structures, consequently leading to longer computation times. In this paper, we present a straightforward and robust method for performing Boolean operations on both closed and open triangulated surfaces. Our approach aims to eliminate errors caused by floating-point operations by relying solely on entity indexing operations, without the need for coordinate computation. By doing so, we ensure the robustness required for Boolean operations. Our method consists of two main stages: (1) Firstly, candidate triangle intersection pairs are identified using an octree data structure, and then parallel algorithms are employed to compute the intersection lines for all pairs of triangles. (2) Secondly, closed or open intersection rings, sub-surfaces, and sub-blocks are formed, which is achieved entirely by cleaning and updating the mesh topology without geometric solid coordinate computation. Furthermore, we propose a novel method based on entity indexing to differentiate between the union, subtraction, and intersection of Boolean operation results, rather than relying on inner and outer classification. We validate the effectiveness of our method through various types of Boolean operations on triangulated surfaces.
In this paper, a parallel Smoothed Finite Element Method (S-FEM) package epSFEM using incremental theory to solve elastoplastic problems is developed by employing the Julia language on a multicore CPU. The S-FEM, a new numerical method combining the Finite Element Method (FEM) and strain smoothing technique, was proposed by Liu G.R. in recent years. The S-FEM model is softer than the FEM model for identical grid structures, has lower sensitivity to mesh distortion, and usually produces more accurate solutions and a higher convergence speed. Julia, as an efficient, user-friendly and open-source programming language, balances computational performance, programming difficulty and code readability. We validate the performance of the epSFEM with two sets of benchmark tests. The benchmark results indicate that (1) the calculation accuracy of epSFEM is higher than that of the FEM when employing the same mesh model; (2) the commercial FEM software requires 10,619 s to calculate an elastoplastic model consisting of approximately 2.45 million triangular elements, while in comparison, epSFEM requires only 5876.3 s for the same computational model; and (3) epSFEM executed in parallel on a 24-core CPU is approximately 10.6 times faster than the corresponding serial version.
Physics-informed neural networks (PINNs) provide a new approach to solving partial differential equations (PDEs), while the properties of coupled physical laws present potential in surrogate modeling. However, the accuracy of PINNs in solving forward problems needs to be enhanced, and solving inverse problems relies on data samples. The smoothed finite element method (S-FEM) can obtain high-fidelity numerical solutions, which are easy to solve for the forward problems of PDEs, but difficult to solve for the inverse problems. To the best of the authors’ knowledge, there has been no prior research on coupling S-FEM and PINN. In this paper, a novel approach that couples S-FEM and PINN is proposed. The proposed approach utilizes S-FEM to synthesize high-fidelity datasets required for PINN inversion, while also improving the accuracy of data-independent PINN in solving forward problems. The proposed approach is applied to solve linear elastic and elastoplastic forward and inverse problems. The computational results demonstrate that the coupling of the S-FEM and PINN exhibits high precision and convergence when solving inverse problems, achieving a maximum relative error of 0.2% in linear elasticity and 5.69% in elastoplastic inversion by using approximately 10,000 data points. The coupling approach also enhances the accuracy of solving forward problems, reducing relative errors by approximately 2–10 times. The proposed coupling of the S-FEM and PINN offers a novel surrogate modeling approach that incorporates knowledge and data-driven techniques, enabling it to solve both forward and inverse problems associated with PDEs with high levels of accuracy and convergence.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.