In the late 1980s The Netherlands Twin Register (NTR) was established by recruiting young twins and multiples at birth and by approaching adolescent and young adult twins through city councils. The Adult NTR (ANTR) includes twins, their parents, siblings, spouses and their adult offspring. The number of participants in the ANTR who take part in survey and / or laboratory studies is over 22,000 subjects. A special group of participants consists of sisters who are mothers of twins. In the Young NTR (YNTR), data on more than 50,000 young twins have been collected. Currently we are extending the YNTR by including siblings of twins. Participants in YNTR and ANTR have been phenotyped every 2 to 3 years in longitudinal survey studies, since 1986 and 1991 for the YNTR and ANTR, respectively. The resulting large population-based datasets are used for genetic epidemiological studies and also, for example, to advance phenotyping through the development of new syndrome scales based on existing items from other inventories. New research developments further include brain imaging studies in selected and unselected groups, clinical assessment of psychopathology through interviews, and cross-referencing the NTR database to other national databases. A large biobank enterprise is ongoing in the ANTR in which blood and urine samples are collected for genotyping, expression analysis, and meta-bolomics studies. In this paper we give an update on the YNTR and ANTR phenotyping and on the ongoing ANTR biobank studies.
Birth weight (BW) variation is influenced by fetal and maternal genetic and non-genetic factors, and has been reproducibly associated with future cardio-metabolic health outcomes. These associations have been proposed to reflect the lifelong consequences of an adverse intrauterine environment. In earlier work, we demonstrated that much of the negative correlation between BW and adult cardio-metabolic traits could instead be attributable to shared genetic effects. However, that work and other previous studies did not systematically distinguish the direct effects of an individual’s own genotype on BW and subsequent disease risk from indirect effects of their mother’s correlated genotype, mediated by the intrauterine environment. Here, we describe expanded genome-wide association analyses of own BW (n=321,223) and offspring BW (n=230,069 mothers), which identified 278 independent association signals influencing BW (214 novel). We used structural equation modelling to decompose the contributions of direct fetal and indirect maternal genetic influences on BW, implicating fetal- and maternal-specific mechanisms. We used Mendelian randomization to explore the causal relationships between factors influencing BW through fetal or maternal routes, for example, glycemic traits and blood pressure. Direct fetal genotype effects dominate the shared genetic contribution to the association between lower BW and higher type 2 diabetes risk, whereas the relationship between lower BW and higher later blood pressure (BP) is driven by a combination of indirect maternal and direct fetal genetic effects: indirect effects of maternal BP-raising genotypes act to reduce offspring BW, but only direct fetal genotype effects (once inherited) increase the offspring’s later BP. Instrumental variable analysis using maternal BW-lowering genotypes to proxy for an adverse intrauterine environment provided no evidence that it causally raises offspring BP. In successfully separating fetal from maternal genetic effects, this work represents an important advance in genetic studies of perinatal outcomes, and shows that the association between lower BW and higher adult BP is attributable to genetic effects, and not to intrauterine programming.
Estimates from genome-wide association studies (GWAS) represent a combination of the effect of inherited genetic variation (direct effects), demography (population stratification, assortative mating) and genetic nurture from relatives (indirect genetic effects). GWAS using family-based designs can control for demography and indirect genetic effects, but large-scale family datasets have been lacking. We combined data on 159,701 siblings from 17 cohorts to generate population (between-family) and within-sibship (within-family) estimates of genome-wide genetic associations for 25 phenotypes. We demonstrate that existing GWAS associations for height, educational attainment, smoking, depressive symptoms, age at first birth and cognitive ability overestimate direct effects. We show that estimates of SNP-heritability, genetic correlations and Mendelian randomization involving these phenotypes substantially differ when calculated using within-sibship estimates. For example, genetic correlations between educational attainment and height largely disappear. In contrast, analyses of most clinical phenotypes (e.g. LDL-cholesterol) were generally consistent between population and within-sibship models. We also report compelling evidence of polygenic adaptation on taller human height using within-sibship data. Large-scale family datasets provide new opportunities to quantify direct effects of genetic variation on human traits and diseases.
I n 1986 we began The Netherlands Twin Register (NTR) by recruiting young twins and multiples a few weeks or months after birth. Currently we register around 50% of all newborn multiples in The Netherlands. Their parents receive a questionnaire at registration and afterwards when the children are 2, 3, 5, 7, 10 and 12 years of age. Teachers are asked to rate the behavior of the children at ages 7, 10 and 12 years. Adolescent and young-adult twins were recruited through City Councils in the early 1990s. These twins, their parents and siblings participate in longitudinal survey studies that include items about health, fertility, lifestyle, addiction, personality and psychopathology, religion, socioeconomic status, and educational attainment. The total number of twins and multiples registered with the NTR is currently over 60,000. Subgroups of twins and siblings take part in studies of cognitive development, brain function and neuropsychological indices of attention processes, and molecular genetic studies of classical and behavioral cardiovascular risk factors. DNA samples are currently collected in selected twin families for two large linkage studies, which aim to find QTLs for anxious depression and for nicotine addiction. Sisters who are mothers of DZ twins contribute DNA samples for a linkage study of DZ twinning. Large cohorts of phenotyped family members from the general population are very valuable for genetic epidemiological studies and permit selection of informative families for gene finding studies.
I n order to determine high school entrance level in the Netherlands, nowadays, much value is attached to the results of a national test of educational achievement (CITO), administered around age 12. Surprisingly, up until now, no attention has been paid to the etiology of individual differences in the results of this national test of educational achievement. No attempt has been made to address the question about the nature of a possible association between the results of the CITO and cognitive abilities, as measured by psychometric IQ. The aim of this study is to explore to what extent psychometric IQ and scholastic achievement, as assessed by the CITO high school entrance test, are correlated. In addition, it was investigated whether this expected correlation was due to a common genetic background, shared or nonshared environmental influences common to CITO and intelligence or a combination of these influences. To this end multivariate behavior genetic analyses with CITO and IQ at ages 5, 7, 10 and 12 years have been conducted. The correlations were .41, .50, .60, and .63 between CITO and IQ assessed at age 5, 7, 10, and 12 respectively. The results of the analyses pointed to genetic effects as the main source of variance in CITO and an important source of covariance between CITO and IQ. Additive genetic effects accounted for 60% of the individual differences found in CITO scores in a large sample of Dutch 12-year-olds. This high heritability indicated that the CITO might be a valuable instrument to assess individual differences in cognitive abilities in children but might not be the right instrument to put the effect of education to the test.In the Netherlands, nowadays, much value is attached to the results of a national test of educational achievement (CITO), administered around age 12, in order to determine high school entrance level. The results of the test are often used as an independent judgment, besides the teachers' opinion, in advising the parents on the future educational level of their child. So the CITO is used as an aid in choosing the most appropriate type of high school (e.g., academic versus technical). From a historical perspective, this attention for "independent" testing has to do with the possibilities for selection. The establisher of the CITO (Eindtoets Basisonderwijs, 2002) emphasized that this national test of educational achievement has put the effect of education in a particular school to the test besides measuring possible learning potential or cognitive abilities in children (Geldermans, 2001). It was hypothesized that success in scholastic achievement depended on the quality of the elementary school. A large number of articles in Dutch daily newspapers were dedicated to the influences of the school population and school neighborhood on the test results of the pupils. In these articles the influences of socioeconomic status (SES) and ethnic background of the majority of the children at a certain school were considered important factors to classify the school and the future success...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.