The Drosophila larval neuromuscular system provides an ideal context in which to study synaptic partner choice, because it contains a small number of pre- and postsynaptic cells connected in an invariant pattern. The discovery of interactions between two subfamilies of IgSF cell surface proteins, the Dprs and the DIPs, provided new candidates for cellular labels controlling synaptic specificity. Here we show that DIP-α is expressed by two identified motor neurons, while its binding partner Dpr10 is expressed by postsynaptic muscle targets. Removal of either DIP-α or Dpr10 results in loss of specific axonal branches and NMJs formed by one motor neuron, MNISN-1s, while other branches of the MNISN-1s axon develop normally. The temporal and spatial expression pattern of dpr10 correlates with muscle innervation by MNISN-1s during embryonic development. We propose a model whereby DIP-α and Dpr10 on opposing synaptic partners interact with each other to generate proper motor neuron connectivity.
In stereotyped neuronal networks, synaptic connectivity is dictated by cell surface proteins, which assign unique identities to neurons, and physically mediate axon guidance and synapse targeting. We recently identified two groups of immunoglobulin superfamily proteins in Drosophila, Dprs and DIPs, as strong candidates for synapse targeting functions. Here, we uncover the molecular basis of specificity in Dpr–DIP mediated cellular adhesions and neuronal connectivity. First, we present five crystal structures of Dpr–DIP and DIP–DIP complexes, highlighting the evolutionary and structural origins of diversification in Dpr and DIP proteins and their interactions. We further show that structures can be used to rationally engineer receptors with novel specificities or modified affinities, which can be used to study specific circuits that require Dpr–DIP interactions to help establish connectivity. We investigate one pair, engineered Dpr10 and DIP-α, for function in the neuromuscular circuit in flies, and reveal roles for homophilic and heterophilic binding in wiring.
Throughout the nervous system, the convergence of two or more presynaptic inputs on a target cell is commonly observed. The question we ask here is to what extent converging inputs influence each other's structural and functional synaptic plasticity. In complex circuits, isolating individual inputs is difficult because postsynaptic cells can receive thousands of inputs. An ideal model to address this question is the Drosophila larval neuromuscular junction where each postsynaptic muscle cell receives inputs from two glutamatergic types of motor neurons (MNs), known as 1b and 1s MNs. Notably, each muscle is unique and receives input from a different combination of 1b and 1s motor neurons. We surveyed synapses on multiple muscles for this reason. Here, we identified a cell-specific promoter to ablate 1s MNs after innervation.Additionally, we genetically blocked 1s innervation. Then we measured 1b MN structural and functional responses using electrophysiology and microscopy. For all muscles, 1s MN ablation resulted in 1b MN synaptic expansion and increased basal neurotransmitter release. This demonstrates that 1b MNs can compensate for the loss of convergent inputs. However, only a subset of 1b MNs showed compensatory evoked activity, suggesting spontaneous and evoked plasticity are independently regulated. Finally, we used DIP-α mutants that block 1s MN synaptic contacts; this eliminated robust 1b synaptic plasticity, raising the possibility that muscle co-innervation may define an activity "set point" that is referenced when subsequent synaptic perturbations occur. This model can be tested in more complex circuits to determine if coinnervation is fundamental for input-specific plasticity..
How circuits assemble starting from stem cells is a fundamental question in developmental neurobiology. We test the hypothesis that, in neuronal stem cells, temporal transcription factors predictably control neuronal terminal features and circuit assembly. Using the Drosophila motor system, we manipulate expression of the classic temporal transcription factor Hunchback (Hb) specifically in the NB7-1 stem cell, which produces U motor neurons (MNs), and then we monitor dendrite morphology and neuromuscular synaptic partnerships. We find that prolonged expression of Hb leads to transient specification of U MN identity, and that embryonic molecular markers do not accurately predict U MN terminal features. Nonetheless, our data show Hb acts as a potent regulator of neuromuscular wiring decisions. These data introduce important refinements to current models, show that molecular information acts early in neurogenesis as a switch to control motor circuit wiring, and provide novel insight into the relationship between stem cell and circuit.
In complex nervous systems, neurons must identify their correct partners to form synaptic connections. The prevailing model to ensure correct recognition posits that cell surface proteins (CSPs) in individual neurons act as identification tags. Thus, knowing what cells express which CSPs would provide insights into neural development, synaptic connectivity, and nervous system evolution. Here, we investigated expression of dprs and DIPs, two CSP subfamilies belonging to the immunoglobulin superfamily, in Drosophila larval motor neurons (MNs), muscles, glia, and sensory neurons (SNs), using a collection of GAL4 driver lines. We found that dprs are more broadly expressed than DIPs in MNs and SNs, and each examined neuron expresses a unique combination of dprs and DIPs. Interestingly, many dprs and DIPs are not robustly expressed, but instead, are found in gradient and temporal expression patterns. In addition, the unique expression patterns of dprs and DIPs revealed three uncharacterized MNs. This study sets the stage for exploring the functions of dprs and DIPs in Drosophila MNs and SNs and provides genetic access to subsets of neurons.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.