[reaction: see text] Dihydroxylation under ruthenium catalysis provides an easy access to syn-diols, although overoxidation is a common side reaction. Furthermore, the high catalyst loadings offset the lower price of ruthenium compared to osmium. In this paper, we present an improved protocol for the RuO(4)-catalyzed syn-dihydroxylation using only 0.5 mol % catalyst under acidic conditions. A variety of olefins can be hydroxylated in good to excellent yields with only minor formation of side products.
[reaction: see text] The catalytic dihydroxylation of olefins represents a unique synthetic tool for the generation of two C,O-bonds with defined relative configuration. Whereas OsO(4) has been established as a very general dihydroxylation catalyst within the past 30 years, the less expensive and toxic isoelectronic RuO(4) has found only limited use for this type of oxygen-transfer reaction. High catalyst loading and undesired side reactions were severe drawbacks in RuO(4)-catalyzed oxidations of C,C-double bonds. Recently, we were able to improve the RuO(4)-catalyzed dihydroxylation by addition of Bronsted acids to the reaction mixture. This protocol proved to be of general applicability, however, certain limitations were observed. To address these problematic functional groups a new Lewis acid accelerated oxidation was developed. The use of only 10 mol % of CeCl(3) allowed a further decrease in the catalyst concentration down to 0.25 mol % while broadening the scope of the reaction. Silyl ethers and nitrogen containing functional groups are now tolerated in this optimized protocol. Furthermore, competing scission reactions are supressed in the presence of Lewis acid allowing longer reaction times and the successful oxidation of electron-deficient tetrasubstituted double bonds that cannot be oxidized using known dihydroxylation protocols.
Recently, Lewis acidic calcium salts bearing weakly coordinating anions such as Ca(NTf₂)₂, Ca(OTf)₂, CaF₂ and Ca[OCH(CF₃)₂]₂ have been discovered as catalysts for the transformation of alcohols, olefins and carbonyl compounds. High stability towards air and moisture, selectivity and high reactivity under mild reaction conditions render these catalysts a sustainable and mild alternative to transition metals, rare-earth metals or strong Brønsted acids.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.