This paper explores the advantages of simulation to raise the question of how digital and social networks affect the mobility in a pastoralist artificial society in the context of environmental degradation. We aim to explore mechanisms and develop scenarios, which are going to be validated through further research. We use a model of a simple pastoralist society in a world without borders to migration by adding the possibility of experiencing the effects of social structures (such as family and friends) and technological networks (e.g., social media). It appears obvious that pastoralist mobility depends on other dimensions as land tenure and traditional knowledge; however, isolating these two effects and experimenting in a simple society allow us to filter the multidimensionality of mobility decisions and concentrate on comparing scenarios in several different social structures and technological network combinations. The results show an expected behavior of more connection and more mobility, and a non-linear emergent behavior where pastoralists wait for a longer amount of time to mobilize when they interact using powerful social and technological networks. This occurs until they decide to move, and then, they mobilize more quickly and strongly than they did when communication was non-existent between them. The literature on migration explains this emergent non-linear behavior.
<p>Arctic permafrost degradation and carbon decomposition do not occur homogeneously across Arctic ecosystems due to the rich landscape diversity and the high amount of small-scale heterogeneities. Traditionally, Earth system models (ESM) are deployed to investigate future climate change in the northern permafrost areas. The typical heterogeneous landscape characteristics of the Arctic are however in scale well below the usual ESM resolutions of several hundred kilometers. To take in-depth account of small-scale heterogeneous landscapes, a higher land surface model resolution is advantageous.</p> <p>To investigate whether and why resolution matters in simulating the interactions of soil physics, hydrology, and vegetation in the Arctic, we develop a high-resolution version of the land surface model (LSM) JSBACH3 on the scale of 5 km for a case study in the Chersky region in eastern Siberia. We then compare the results with the output of the same model in a low ESM resolution of about 200 km. The LSM simulations are performed in standalone mode (without feedbacks to climate) using the same climate forcing for both, high- and low- resolution setups. Our analysis shows that small-scale soil characteristics are more relevant regarding resolution than vegetation properties. We found that the formulation of supercooled water processes in the soil has a major impact on the differences between low and fine resolutions, as well as soil organic matter fractions. Other soil parameters such as hydraulic conductivity, soil porosity or heat conductivity have relatively minor effects on differences between model resolutions.</p> <p>We show the relevance of model resolution in the simulation of Arctic land physical and biogeochemical interactions and thus argue that the development of a high-resolution pan-Arctic LSM would be a major advancement in modelling future Arctic permafrost and carbon projections.</p>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.