Design of functionalized biomimetic scaffolds is one of the key approaches for regenerative medicine and other biomedical applications. Development of engineered tissue should optimize organization and function of cells and tissue in vitro as well as in vivo. Surface topography is one factor controlling cellular behavior and tissue development. By topographical patterning of biocompatible materials, highly functionalized scaffolds can be developed. Gelatin is hereby a promising candidate due to its biocompatibility and biodegradability. It is low in cost and easy to handle, enabling a variety of applications in science and medicine. However, for biomedical applications at physiological conditions, gelatin has to be additionally stabilized since its gel–sol-transition temperature lies beneath the human body temperature. This is realized by a reagent-free cross-linking technique utilizing electron beam treatment. By topographical patterning, gelatin can be functionalized toward scaffolds for cell cultivation and tissue development. Thereby, customized patterns are transferred onto gelatin hydrogels via molds. Thermal stabilization of gelatin is then achieved by electron-induced cross-linking. In this study, we investigate the influence of gelatin concentration and irradiation dose on pattern transfer, long-term stability of topographically patterned gelatin hydrogels, and their impact on the cellular behavior of human umbilical vein endothelial cells as well as normal human dermal fibroblasts. We will show that contact guidance occurs for both cell types due to a concrete stripe pattern. In addition, the presented studies show a high degree of cytocompatibility, indicating a high potential of topographically patterned gelatin hydrogels as tissue development scaffold for prospective biomedical applications.
Durable, mechanically robust osseointegration of metal implants poses one of the largest challenges in contemporary orthopedics. The application of biomimetic hydroxyapatite (HAp) coatings as mediators for enhanced mechanical coupling to natural bone constitutes a promising approach. Motivated by recent advances in the field of smart metals that might open the venue for alternate therapeutic concepts, we explore their mechanical coupling to sputter-deposited HAp layers in a combined experimental-theoretical study. While experimental delamination tests and comprehensive structural characterization, including high-resolution transmission electron microscopy, are utilized to establish structure-property relationships, density functional theory based total energy calculations unravel the underlying physics and chemistry of bonding and confirm the experimental findings. Experiments and modeling indicate that sputter-deposited HAp coatings are strongly adherent to the exemplary ferromagnetic shape-memory alloys, Ni-Mn-Ga and Fe-Pd, with delamination stresses and interface bonding strength exceeding the physiological scales by orders of magnitude.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.