It has been suggested that spreading depression may play a role in triggering classical migraine. In this study the retinal spreading depression was used as a pharmacological tool to test the neuronal effects of several common antimigraine drugs. As the chicken retina is void of any blood vessels the observed effects must be of pure neuronal origin. It is shown that propranolol, sumatriptan, methysergide, paracetamol and acetylsalicyclic acid decrease the propagation velocity of retinal spreading depression waves, accelerate the recovery of the optical and electrical signal and reduce the amplitude of the negative potential shift, concomitant with the spreading depression. Barbiturate increases the spreading velocity, and the amplitude of the potential shift. Ergotamine, clonidine, lisuride and iprazochrome have no significant influence on retinal spreading depression.
Neuronal tissue and especially the central nervous system (CNS) is an excitable medium. Self-organisation, pattern formation, and propagating excitation waves as typical characteristics in excitable media consequently have been found in neuronal tissue. The properties of such phenomena in excitable media do critically depend on the parameters (i.e., electromagnetic fields, temperature, chemical drugs) of the system and on small external forces to which gravity belongs. The spreading depression, a propagating excitation depression wave of neuronal activity, is one of the best described of the those wave phenomena in the CNS. Especially in the retina as a true part of the CNS it can be easily observed with optical techniques due to the high intrinsic optical signal of this tissue. Another of such waves in neuronal tissue is the propagating action potential in nerve fibres. In this paper, data from our laboratories concerning the influence of gravity on the velocity of propagating waves in excitable media are summarized mainly in terms of the retinal spreading depression and propagating action potentials. Additionally, we have used waves in gels of the Belousov-Zhabotinsky reaction as the physicochemical model system of biological activity as the properties of these waves follow the same theories as the spreading depression and action potentials and they have some striking similarities in wave behavior. Thus propagating Belousov-Zhabotinsky waves are described by their gravity dependence.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.