Chinese chinquapin (Castanea henryi) nut provides a rich source of starch and nutrients as food and feed, but its yield is restricted by a low ratio of female to male flowers. Little is known about the developmental programs underlying sex differentiation of the flowers. To investigate the involvement of phytohormones during sex differentiation, we described the morphology of male and female floral organs and the cytology of flower sex differentiation, analyzed endogenous levels of indole-3-acetic acid (IAA), gibberellins (GAs), cytokinins (CKs), and abscisic acid (ABA) in the flowers, investigated the effects of exogenous hormones on flower development, and evaluated the expression profiles of genes related to biosyntheses and signaling pathways of these four hormones using RNA-Seq combined with qPCR. Morphological results showed that the flowers consisted of unisexual and bisexual catkins, and could be divided into four developmental stages. HPLC results showed that CK accumulated much more in the female flowers than that in the male flowers, GA and ABA showed the opposite results, while IAA did not show a tendency. The effects of exogenous hormones on sex differentiation were consistent with those of endogenous hormones. RNA-Seq combined with qPCR analyses suggest that several genes may play key roles in hormone biosynthesis and sex differentiation. This study presents the first comprehensive report of phytohormone biosynthesis and signaling during sex differentiation of C. henryi, which should provide a foundation for further mechanistic studies of sex differentiation in Castanea Miller species and other nonmodel plants.
Tung tree ( Vernicia fordii ), an economically important woody oil plant, is a monoecious and diclinous species with male and female flowers on the same inflorescence. The extremely low proportion of female flowers leads to low fruit yield in tung orchards. The female flower normally develops along with stamen abortion; otherwise sterile ovules will be produced. However, little knowledge is known about the molecular basis of the female flower development in tung tree. In this study, integrated analyses of morphological and cytological observations, endogenous phytohormone assay and RNA-seq were conducted to understand the molecular mechanism of the female flower development in tung tree. Cytological observation suggested that the abortion of stamens in female flowers (SFFs) belongs to the type of programmed cell death (PCD), which was caused by tapetum degeneration at microspore mother cell stage. A total of 1,366 differentially expressed genes (DEGs) were identified in female flowers by RNA-seq analysis, of which 279 (20.42%) DEGs were significantly enriched in phenylpropanoid biosynthesis, phenylalanine metabolism, flavonoid biosynthesis, starch and sucrose metabolism, and plant hormone signal transduction. Stage-specific transcript identification detected dynamically expressed genes of important transcription regulators in female flowers that may be involved in PCD and floral organ development. Gene expression patterns revealed that 17 anther and pollen development genes and 37 PCD-related genes might be involved in the abortion of SFF. Further analyses of phytohormone levels and co-expression networks suggested that salicylic acid (SA) accumulation could trigger PCD and inhibit the development of SFF in tung tree. This study provides new insights into the role of SA in regulating the abortion of SFF to develop normal female flowers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.