Both particulate matter (PM) and black carbon (BC) impact climate change and human health. Uncertainties in emission inventories of PM and BC are partially due to large variation of measured emission factors (EFs) and lack of EFs from developing countries. Although there is a debate whether thermal-optically measured elemental carbon (EC) may be referred to as BC, EC are often treated as the same mass of BC. In this study, EFs of PM (EFPM) and EC (EFEC) for 9 crop residues and 5 coals were measured in actual rural cooking and coal stoves using the carbon mass balance method. The dependence of the EFs on fuel properties and combustion conditions were investigated. It was found that the mean EFPM were 8.19 ± 4.27 and 3.17 ± 4.67 g/kg and the mean EFEC were 1.38 ± 0.70 and 0.23 ± 0.36 g/kg for crop residues and coals, respectively. PM with size less than 10 μm (PM10) from crop residues were dominated by particles of aerodynamic size ranging from 0.7 to 2.1 μm, while the most abundant size ranges of PM10 from coals were either from 0.7 to 2.1 μm or less than 0.7 μm. Of various fuel properties and combustion conditions tested, fuel moisture and modified combustion efficiency (MCE) were the most critical factors affecting EFPM and EFEC for crop residues. For coal combustion, EFPM were primarily affected by MCE and volatile matter, while EFEC were significantly influenced by ash content, volatile matter, heat value, and MCE. It was also found that EC emissions were significantly correlated with emissions of PM with size less than 0.4 μm.
BackgroundFucoidan is a sulfated polysaccharide derived from brown algae that has been reported to perform multiple biological activities, including antitumor activity. In this study, we examined the influence of crude fucoidan on mouse breast cancer in vitro and in vivo.Materials and MethodsIn vitro, fluorescent staining, flow cytometry and Western blot were performed to analyze apoptosis and vascular endothelial growth factor (VEGF) expression of mouse breast cancer 4T1 cells. In vivo, therapy experiments were conducted on Babl/c mice bearing breast cancer. The tumor volume and weight were measured. The number of apoptotic cells and microvascular density (MVD) in tumor tissues were assessed by TUNEL and CD34 immunostaining. Immunohistochemical assays and ELISA assay were used to detect the expression of VEGF in tissues.ResultsIn vitro studies showed that crude fucoidan significantly decreased the viable number of 4T1 cells, induced apoptosis and down-regulated the expression of VEGF. The expression of Bcl-2 was decreased, and the ratio of Bcl-2 to Bax was significantly decreased. The expression of Survivin and phosphorylated extracellular signal regulated protein kinases (ERKs) was decreased. Cytochrome C was released from mitochondria into cytosol, and the cleaved Caspase-3 protein rose after fucoidan treatment. Intraperitoneal injection of fucoidan in breast cancer models reduced the tumor volume and weight. The enhanced antitumor efficacy was associated with decreased angiogenesis and increased induction of apoptosis.ConclusionThese findings indicated that crude fucoidan inhibited mouse breast cancer growth in vitro and in vivo. These data suggest that fucoidan may serve as a potential therapeutic agent for breast cancer.
Indoor combustion of crop residues for cooking or heating is one of the most important emission sources of polycyclic aromatic hydrocarbons (PAHs) in developing countries. However, data on PAH emission factors (EFs) for burning crop residues indoor, particularly those measured in field were scarce, leading to large uncertainties in the emission inventories. In this study, EFs of PAHs for nine commonly used crop residues burnt in a typical Chinese rural cooking stove were measured in simulated kitchen. The measured EFs of total PAHs averaged at 63 ± 37 mg/kg, ranging from 27 to 142 mg/kg, which were higher than those measured in chamber experiments, implying that the laboratory experiment based emission and risk assessment should be carefully reviewed. EFs of gaseous and particulate phase PAHs were 27 ± 13 and 35 ± 23 mg/kg, respectively. Composition profiles and isomer ratios of emitted PAHs were characterized. Stepwise regressions found that modified combustion efficiency and fuel moisture were the most important factors affecting the emissions. 80 ± 6 % of PAHs were associated with PM2.5 and the mass percentage of PAHs in fine particles increased as the molecular weight increased. For freshly emitted PAHs, absorption into organic carbon, rather than adsorption, dominated the gas-particle partitioning.
Coal consumption is one important contributor to energy production, and is regarded as one of the most important sources of air pollutants that have considerable impacts on human health and climate change. Emissions of polycyclic aromatic hydrocarbons (PAHs) from coal combustion were studied in a typical stove. Emission factors (EFs) of 16 EPA priority PAHs from tested coals ranged from 6.25 ± 1.16 mg kg−1 (anthracite) to 253 ± 170 mg kg−1 (bituminous), with NAP and PHE dominated in gaseous and particulate phases, respectively. Size distributions of particulate phase PAHs from tested coals showed that they were mostly associated with particulate matter (PM) with size either between 0.7 and 2.1 μm or less than 0.4 μm (PM0.4). In the latter category, not only were more PAHs present in PM0.4, but also contained higher fractions of high molecular weight PAHs. Generally, there were more than 89% of total particulate phase PAHs associated with PM2.5. Gas-particle partitioning of freshly emitted PAHs from residential coal combustions were thought to be mainly controlled by absorption rather than adsorption, which is similar to those from other sources. Besides, the influence of fuel properties and combustion conditions was further investigated by using stepwise regression analysis, which indicated that almost 57 ± 10% of total variations in PAH EFs can be accounted for by moisture and volatile matter content of coal in residential combustion.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.