Benzophenone, the parent of the diarylketone family, is a versatile compound commonly used as a UV blocker. It may also trigger triplet-based DNA photosensitization. Therefore, benzophenone is involved in DNA photodamage induction. In the absence of experimentally resolved structure, the mechanism of DNA damage production remains elusive. Employing a hybrid quantum mechanics/molecular mechanics approach, here we address the spin transfer mechanism between this drug and proximal thymine, that is, the DNA nucleobase most prone to suffer triplet damages.
An implementation
of real-time time-dependent Hartree–Fock
(RT-TDHF) and current density functional theory (RT-TDCDFT) for molecules
in strong uniform magnetic fields is presented. In contrast to earlier
implementations, the present work enables the use of the RT-TDCDFT
formalism, which explicitly includes field-dependent terms in the
exchange–correlation functional. A range of current-dependent
exchange–correlation functionals based on the TPSS functional
are considered, including a range-separated variant, which is particularly
suitable for application to excited state calculations. The performance
of a wide range of propagator algorithms for real-time methods is
investigated in this context. A recently proposed molecular orbital
pair decomposition analysis allows for assignment of electronic transitions,
providing detailed information about which molecular orbitals are
involved in each excitation. The application of these methods is demonstrated
for the electronic absorption spectra of N
2
and H
2
O both in the absence and in the presence of a magnetic field. The
dependence of electronic spectra on the magnetic field strength and
its orientation relative to the molecule is studied. The complex evolution
of the absorption spectra with magnetic field is rationalized using
the molecular orbital pair decomposition analysis, which provides
crucial insight in strong fields where the spectra are radically different
from their zero-field counterparts.
Take-down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
We report a computational investigation of the hydrogen abstraction (H-abstraction) induced by triplet benzophenone ((3)BP) on thymine nucleobase and backbone sugar. The chemical process is studied using both high level multiconfigurational perturbation and density functional theory. Both methods show good agreement in predicting small kinetic barriers. Furthermore the behavior of benzophenone in DNA is simulated using molecular dynamics and hybrid quantum mechanics/molecular mechanics methods. The accessibility of benzophenone to the labile hydrogens within B-DNA is demonstrated, as well as the driving force for this reaction. We evidence a strong dependence of the H-abstraction with the non-covalent BP-DNA interaction mode, and a reaction that is less favorable when embedded in DNA than for the isolated system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.