Cassava is a major tropical food crop in the Euphorbiaceae family that has high carbohydrate production potential and adaptability to diverse environments. Here we present the draft genome sequences of a wild ancestor and a domesticated variety of cassava and comparative analyses with a partial inbred line. We identify 1,584 and 1,678 gene models specific to the wild and domesticated varieties, respectively, and discover high heterozygosity and millions of single-nucleotide variations. Our analyses reveal that genes involved in photosynthesis, starch accumulation and abiotic stresses have been positively selected, whereas those involved in cell wall biosynthesis and secondary metabolism, including cyanogenic glucoside formation, have been negatively selected in the cultivated varieties, reflecting the result of natural selection and domestication. Differences in microRNA genes and retrotransposon regulation could partly explain an increased carbon flux towards starch accumulation and reduced cyanogenic glucoside accumulation in domesticated cassava. These results may contribute to genetic improvement of cassava through better understanding of its biology.
On January 22, 2020, China National Center for Bioinformation (CNCB) released the 2019 Novel Coronavirus Resource (2019nCoVR), an open-access information resource for the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). 2019nCoVR features a comprehensive integration of sequence and clinical information for all publicly available SARS-CoV-2 isolates, which are manually curated with value-added annotations and quality evaluated by an automated in-house pipeline. Of particular note, 2019nCoVR offers systematic analyses to generate a dynamic landscape of SARS-CoV-2 genomic variations at a global scale. It provides all identified variants and their detailed statistics for each virus isolate, and congregates the quality score, functional annotation, and population frequency for each variant. Spatiotemporal change for each variant can be visualized and historical viral haplotype network maps for the course of the outbreak are also generated based on all complete and high-quality genomes available. Moreover, 2019nCoVR provides a full collection of SARS-CoV-2 relevant literature on the coronavirus disease 2019 (COVID-19), including published papers from PubMed as well as preprints from services such as bioRxiv and medRxiv through Europe PMC. Furthermore, by linking with relevant databases in CNCB, 2019nCoVR offers data submission services for raw sequence reads and assembled genomes, and data sharing with NCBI. Collectively, SARS-CoV-2 is updated daily to collect the latest information on genome sequences, variants, haplotypes, and literature for a timely reflection, making 2019nCoVR a valuable resource for the global research community. 2019nCoVR is accessible at https://bigd.big.ac.cn/ncov/.
The National Genomics Data Center (NGDC), part of the China National Center for Bioinformation (CNCB), provides a suite of database resources to support worldwide research activities in both academia and industry. With the explosive growth of multi-omics data, CNCB-NGDC is continually expanding, updating and enriching its core database resources through big data deposition, integration and translation. In the past year, considerable efforts have been devoted to 2019nCoVR, a newly established resource providing a global landscape of SARS-CoV-2 genomic sequences, variants, and haplotypes, as well as Aging Atlas, BrainBase, GTDB (Glycosyltransferases Database), LncExpDB, and TransCirc (Translation potential for circular RNAs). Meanwhile, a series of resources have been updated and improved, including BioProject, BioSample, GWH (Genome Warehouse), GVM (Genome Variation Map), GEN (Gene Expression Nebulas) as well as several biodiversity and plant resources. Particularly, BIG Search, a scalable, one-stop, cross-database search engine, has been significantly updated by providing easy access to a large number of internal and external biological resources from CNCB-NGDC, our partners, EBI and NCBI. All of these resources along with their services are publicly accessible at https://bigd.big.ac.cn.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.