Compressive sensing (CS) is an effective approach for fast Magnetic Resonance Imaging (MRI). It aims at reconstructing MR images from a small number of under-sampled data in k-space, and accelerating the data acquisition in MRI. To improve the current MRI system in reconstruction accuracy and speed, in this paper, we propose two novel deep architectures, dubbed ADMM-Nets in basic and generalized versions. ADMM-Nets are defined over data flow graphs, which are derived from the iterative procedures in Alternating Direction Method of Multipliers (ADMM) algorithm for optimizing a general CS-based MRI model. They take the sampled k-space data as inputs and output reconstructed MR images. Moreover, we extend our network to cope with complex-valued MR images. In the training phase, all parameters of the nets, e.g., transforms, shrinkage functions, etc., are discriminatively trained end-to-end. In the testing phase, they have computational overhead similar to ADMM algorithm but use optimized parameters learned from the data for CS-based reconstruction task. We investigate different configurations in network structures and conduct extensive experiments on MR image reconstruction under different sampling rates. Due to the combination of the advantages in model-based approach and deep learning approach, the ADMM-Nets achieve state-of-the-art reconstruction accuracies with fast computational speed.
Human AlkB homolog H5 (ALKBH5) is a primary m6A demethylase, which is dysregulated and acts as a biological and pharmacological role in human cancers or non-cancers. ALKBH5 plays a dual role in various cancers through regulating kinds of biological processes, such as proliferation, migration, invasion, metastasis and tumor growth. In addition, it takes a great part in human non-cancer, including reproductive system diseases. The underlying regulatory mechanisms of ALKBH5 that relys on m6A-dependent modification are implicated with long non-coding RNA, cancer stem cell, autophagy and hypoxia. ALKBH5 is also an independent prognostic indicator in various cancers. In this review, we summarized the current evidence on ALKBH5 in diverse human cancers or non-cancers and its potential as a prognostic target.
Reducing the exposure to X-ray radiation while maintaining a clinically acceptable image quality is desirable in various CT applications. To realize low-dose CT (LdCT) imaging, model-based iterative reconstruction (MBIR) algorithms are widely adopted, but they require proper prior knowledge assumptions in the sinogram and/or image domains and involve tedious manual optimization of multiple parameters. In this work, we propose a deep learning (DL)-based strategy for MBIR to simultaneously address prior knowledge design and MBIR parameter selection in one optimization framework. Specifically, a parameterized plug-and-play alternating direction method of multipliers (3pADMM) is proposed for the general penalized weighted least-squares (PWLS) model, and then, by adopting the basic idea of DL, the parameterized plug-and-play (3p) prior and the related parameters are optimized simultaneously in a single framework using a large number of training data. The main contribution of this work is that the 3p prior and the related parameters in the proposed 3pADMM framework can be supervised and optimized simultaneously to achieve robust LdCT reconstruction performance. Experimental results obtained on clinical patient datasets demonstrate that the proposed method can achieve promising gains over existing algorithms for LdCT image reconstruction in terms of noise-induced artifact suppression and edge detail preservation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.