The host innate immune response mediated by type I interferon (IFN) and the resulting up-regulation of hundreds of interferon-stimulated genes (ISGs) provide an immediate barrier to virus infection. Studies of the type I ‘interferome’ have mainly been carried out at a single species level, often lacking the power necessary to understand key evolutionary features of this pathway. Here, using a single experimental platform, we determined the properties of the interferomes of multiple vertebrate species and developed a webserver to mine the dataset. This approach revealed a conserved ‘core’ of 62 ISGs, including genes not previously associated with IFN, underscoring the ancestral functions associated with this antiviral host response. We show that gene expansion contributes to the evolution of the IFN system and that interferomes are shaped by lineage-specific pressures. Consequently, each mammal possesses a unique repertoire of ISGs, including genes common to all mammals and others unique to their specific species or phylogenetic lineages. An analysis of genes commonly down-regulated by IFN suggests that epigenetic regulation of transcription is a fundamental aspect of the IFN response. Our study provides a resource for the scientific community highlighting key paradigms of the type I IFN response.
SUMMARYIn Arabidopsis thaliana, a family of four genes (HY1, HO2, HO3 and HO4) encode haem oxygenase (HO), and play a major role in phytochrome chromophore biosynthesis. To characterize the contribution of the various haem oxygenase isoforms involved in salt acclimation, the effects of NaCl on seed germination and primary root growth in Arabidopsis wild-type and four HO mutants (hy1-100, ho2, ho3 and ho4) were compared. Among the four HO mutants, hy1-100 displayed maximal sensitivity to salinity and showed no acclimation response, whereas plants over-expressing HY1 (35S:HY1) exhibited tolerance characteristics. Mild salt stress stimulated biphasic increases in RbohD transcripts and production of reactive oxygen species (ROS) (peaks I and II) in wild-type. ROS peak I-mediated HY1 induction and subsequent salt acclimation were observed, but only ROS peak I was seen in the hy1-100 mutant. A subsequent test confirmed the causal relationship of salt acclimation with haemin-induced HY1 expression and RbohD-derived ROS peak II formation. In atrbohD mutants, haemin pre-treatment resulted in induction of HY1 expression, but no similar response was seen in hy1-100, and no ROS peak II or subsequent salt acclimatory responses were observed. Together, the above findings suggest that HY1 plays an important role in salt acclimation signalling, and requires participation of RbohD-derived ROS peak II.
The bat connection
The heterogeneity of COVID-19 makes it challenging to predict the course of infection in an individual. Upon virus infection, interferons (IFNs) generate the initial signals for cellular defenses. Knowing that defects in IFN signaling are associated with more severe COVID-19, Wickenhagen
et al
. used IFN-stimulated gene expression screening on human lung cells from which they identified a gene for 2′-5′-oligoadenylate synthetase 1 (OAS1) (see the Perspective by Schoggins). OAS1 stimulates RNase L to inhibit the virus with a surprising degree of specificity, targeting the membranous organelles in which it replicates. In most mammals, OAS1 is attached to membranes by a prenyl group. However, billions of humans do not have the prenylated OAS1 haplotype, including many experiencing severe COVID-19. The same is true for horseshoe bats, prolific sources of betacoronaviruses, because of an ancient retrotransposition event. —CA
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.