Multiple sclerosis is characterized by inflammatory demyelination and irreversible axonal injury leading to permanent neurological disabilities. Diffusion tensor imaging demonstrates an improved capability over standard magnetic resonance imaging to differentiate axon from myelin pathologies. However, the increased cellularity and vasogenic oedema associated with inflammation cannot be detected or separated from axon/myelin injury by diffusion tensor imaging, limiting its clinical applications. A novel diffusion basis spectrum imaging, capable of characterizing water diffusion properties associated with axon/myelin injury and inflammation, was developed to quantitatively reveal white matter pathologies in central nervous system disorders. Tissue phantoms made of normal fixed mouse trigeminal nerves juxtaposed with and without gel were employed to demonstrate the feasibility of diffusion basis spectrum imaging to quantify baseline cellularity in the absence and presence of vasogenic oedema. Following the phantom studies, in vivo diffusion basis spectrum imaging and diffusion tensor imaging with immunohistochemistry validation were performed on the corpus callosum of cuprizone treated mice. Results demonstrate that in vivo diffusion basis spectrum imaging can effectively separate the confounding effects of increased cellularity and/or grey matter contamination, allowing successful detection of immunohistochemistry confirmed axonal injury and/or demyelination in middle and rostral corpus callosum that were missed by diffusion tensor imaging. In addition, diffusion basis spectrum imaging-derived cellularity strongly correlated with numbers of cell nuclei determined using immunohistochemistry. Our findings suggest that diffusion basis spectrum imaging has great potential to provide non-invasive biomarkers for neuroinflammation, axonal injury and demyelination coexisting in multiple sclerosis.
The dissociation between magnetic resonance imaging (MRI) and permanent disability in multiple sclerosis (MS), termed the clinicoradiological paradox, can primarily be attributed to the lack of specificity of conventional, relaxivity-based MRI measurements in detecting axonal damage, the primary pathological correlate of long-term impairment in MS. Diffusion tensor imaging (DTI) has shown promise in specifically detecting axonal damage and demyelination in MS and its animal model, experimental autoimmune encephalomyelitis (EAE). To quantify the specificity of DTI in detecting axonal injury, in vivo DTI maps from the spinal cords of mice with EAE and quantitative histological maps were both registered to a common space. A pixelwise correlation analysis between DTI parameters, histological metrics, and EAE scores revealed a significant correlation between the water diffusion parallel to the white matter fibers, or axial diffusivity, and EAE score. Furthermore, axial diffusivity was the primary correlate of quantitative staining for neurofilaments (SMI31), markers of axonal integrity. Both axial diffusivity and neurofilament staining were decreased throughout the entire white matter, not solely within the demyelinated lesions seen in EAE. In contrast, although anisotropy was significantly correlated with EAE score, it was not correlated with axonal damage. The results demonstrate a strong, quantitative relationship between axial diffusivity and axonal damage and show that anisotropy is not specific for axonal damage after inflammatory demyelination.
Microglia are phagocytic cells that survey the brain and perform neuroprotective functions in response to tissue damage, but their activating receptors are largely unknown. Triggering receptor expressed on myeloid cells 2 (TREM2) is a microglial immunoreceptor whose loss-of-function mutations in humans cause presenile dementia, while genetic variants are associated with increased risk of neurodegenerative diseases. In myeloid cells, TREM2 has been involved in the regulation of phagocytosis, cell proliferation and inflammatory responses in vitro. However, it is unknown how TREM2 contributes to microglia function in vivo. Here, we identify a critical role for TREM2 in the activation and function of microglia during cuprizone (CPZ)-induced demyelination. TREM2-deficient (TREM2−/−) mice had defective clearance of myelin debris and more axonal pathology, resulting in impaired clinical performances compared to wild-type (WT) mice. TREM2−/− microglia proliferated less in areas of demyelination and were less activated, displaying a more resting morphology and decreased expression of the activation markers MHC II and inducible nitric oxide synthase as compared to WT. Mechanistically, gene expression and ultrastructural analysis of microglia suggested a defect in myelin degradation and phagosome processing during CPZ intoxication in TREM2−/− microglia. These findings place TREM2 as a key regulator of microglia activation in vivo in response to tissue damage.
Non-invasive assessment of the progression of axon damage is important for evaluating disease progression and developing neuroprotective interventions in multiple sclerosis (MS) patients. We examined the cellular responses correlated with diffusion tensor imaging (DTI)-derived axial (λ||) and radial (λ⊥) diffusivity values throughout acute (4 weeks) and chronic (12 weeks) stages of demyelination and after 6 weeks of recovery using the cuprizone demyelination of the corpus callosum model in C57BL/6 and Thy1-YFP-16 mice. The rostro-caudal progression of pathologic alterations in the corpus callosum enabled spatially and temporally defined correlations of pathological features with DTI measurements. During acute demyelination, microglial/macrophage activation was most extensive and axons exhibited swellings, neurofilament dephosphorylation, and reduced diameters. Axial diffusivity values decreased in the acute phase but did not correlate with axonal atrophy during chronic demyelination. In contrast, radial diffusivity increased with the progression of demyelination but did not correlate with myelin loss or astrogliosis. Unlike other animals models with progressive neurodegeneration and axon loss, the acute axon damage did not progress to discontinuity or loss of axons even after a period of chronic demyelination. Correlations of reversible axon pathology, demyelination, microglia/macrophage activation, and astrogliosis with regional axial and radial diffusivity measurements will facilitate the clinical application of DTI in MS patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.