In polluted groundwater, surface water, and industrial sites, chromium is found as one of the most common heavy metals, and one of the 20 main pollutants in China, which poses a great threat to the ecological environment and human health. Combining biological and chemical materials to treat groundwater contaminated by heavy metals is a promising restoration technology. In this research, Klebsiella variicola H12 (abbreviated as K. variicola) was found to have Cr(VI) reduction ability. A high-efficiency Klebsiella variicola H12-carboxymethyl cellulose (abbreviated as CMC)-FeS@biochar system was established for Cr(VI) removal from aqueous solution. The Scanning Electron Microscope-Energy Dispersive Spectrometer (SEM–EDS), X-ray photoelectron spectroscopy (XPS) results indicated that CMC-FeS was successfully loaded onto the surface of biochar, and K. variicola H12 grew well in the presence of CMC-FeS@biochar with microbial biomass up to 4.8 × 108 cells mL−1. Cr(VI) removal rate of CMC-FeS@biochar system, K. variicola H12 system and K. variicola H12 + CMC-FeS@biochar system were 61.8%, 82.2% and 96.6% respectively. This study demonstrated K. variicola H12-CMC-FeS@biochar system have potential value for efficient removal of Cr(VI) from Cr(VI)-polluted groundwater.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.