(circular birefringence) and absorption losses (circular dichroism) with the circu larly polarized light (CPL) illumination. [10] CB arises from the difference in the real part of refractive index, leading to a dif ferent velocity for LCP and RCP compo nents, and thus results in the polarization rotation of the linearly polarized incident light. CD corresponds to the difference in the imaginary part of refractive index, resulting in a distinct absorption loss for LCP and RCP excitations. Besides the con ventional CD and CB, asymmetric trans mission (circular conversion dichroism) is another fundamental chiroptical pheno menon, which exists in the nondiffracting array, referring to different LCPtoRCP and RCPtoLCP conversion efficiencies. [11] All of these chiroptical phenomena have been successfully applied in the spectros copy for identifying special arrangements of chiral matters in biology, chemistry and physics as efficient diagnostic tools. [12][13][14][15][16] However, the chirop tical response in natural chiral materials is relatively weak due to the small electromagnetic (EM) interaction volume, [17] hence limits its further applications.Recent progress in plasmonics paves the way for the enhancement of chiroptical response. [18][19][20] Surface plasmons (SPs), as the collective electrons oscillation at the dielectric and metal interface, [21][22][23] present the capacity of light confine ment and field enhancement, which significantly improve the strength of lightmatter interactions. [24][25][26][27][28] With the uptodate nanofabrication technology, the study field of chirality has been extended from traditional chiral molecules to 3D metallic nanostructures. [29][30][31][32] Chiroptical responses of metallic meta molecules have been widely investigated, [33][34][35] and applied in various fields, such as biosensing, [36] chiral catalysis, [37] polari zation tuning, [38] and chiral photo detection.[39] The 3D metallic structure exhibited giant optical activity response because of the strong interaction between electric and magnetic resonant modes. [40,41] Different from 3D chiral ensembles, planar chiral structures show none chiral effect, as they can always coincide with their mirror images. However, 2D chirality was successfully found in the quasitwodimensional (quasi2D) chiral structure. [42] Moreover, recent reports show that even achiral nanomaterials have the ability to generate strong CD under an oblique CPL illumination. [43] This kind of extrinsic chirality arises from sym metry breaking of the incident light and the quasi2D material, which is quite different from the intrinsic chirality of 3D chiral The plasmonic chiroptical effect has been used to manipulate chiral states of light, where the strong field enhancement and light localization in metallic nanostructures can amplify the chiroptical response. Moreover, in metamaterials, the chiroptical effect leads to circular dichroism (CD), circular birefringence (CB), and asymmetric transmission. Potential applications enabled by chiral plasmonics...
The chiral state of light plays a vital role in light-matter interactions and the consequent revolution of nanophotonic devices and advanced modern chiroptics. As the light-matter interaction goes into the nano- and quantum world, numerous chiroptical technologies and quantum devices require precise knowledge of chiral electromagnetic modes and chiral radiative local density of states (LDOS) distributions in detail, which directly determine the chiral light-matter interaction for applications such as chiral light detection and emission. With classical optical techniques failing to directly measure the chiral radiative LDOS, deep-subwavelength imaging and control of circular polarization (CP) light associated phenomena are introduced into the agenda. Here, we simultaneously reveal the hidden chiral electromagnetic mode and acquire its chiral radiative LDOS distribution of a single symmetric nanostructure at the deep-subwavelength scale by using CP-resolved cathodoluminescence (CL) microscopy. The chirality of the symmetric nanostructure under normally incident light excitation, resulting from the interference between the symmetric and antisymmetric modes of the V-shaped nanoantenna, is hidden in the near field with a giant chiral distribution (∼99%) at the arm-ends, which enables the circularly polarized CL emission from the radiative LDOS hot-spot and the following active helicity control at the deep-subwavelength scale. The proposed V-shaped nanostructure as a functional unit is further applied to the helicity-dependent binary encoding and the two-dimensional display applications. The proposed physical principle and experimental configuration can promote the future chiral characterization and manipulation at the deep-subwavelength scale and provide direct guidelines for the optimization of chiral light-matter interactions for future quantum studies.
Chiral light-matter interactions as an emerging aspect of quantum optics enable exceptional physical phenomena and advanced applications in nanophotonics through the nanoscale exploitation of photon-emitter interactions. The chiral radiative properties of quantum emitters strongly depend on the photonic environment, which can be drastically altered by plasmonic nanostructures with a high local density of states (LDOS). Hence, precise knowledge of the chiral photonic environment is essential for manipulating the chirality of light-matter interactions, which requires high resolution chiral characterization techniques. In this work, chiral radiative LDOS distributions of single plasmonic nanostructures that directly govern the chiral radiative spontaneous decay of quantum emitters are imaged at the nanoscale by using cathodoluminescence nanoscopy, enabling precise and highly efficient control of chiral photon emission for chiroptical technologies. Radiative LDOS hot-spots with the chirality larger than 93% are obtained by properly designing chiral plasmonic modes of Au nanoantennas. After fabricating monolayered WSe2 nanodisks (NDs) at chiral radiative LDOS hot-spots and forming ND/Au hybrid nanostructures, the chiral radiative properties of WSe2 NDs are significantly modified, leading to chiral photoluminescence. Our experimental concept and method provide an effective way to characterize and manipulate chiral light-matter interactions at the nanoscale, facilitating future applications in chiral quantum nanophotonics such as single-photon sources and light emission devices.
The Chengdu plain of south-west China lies outside the main centres of early domestication in the Huanghe and Yangzi valleys, but its importance in Chinese prehistory is demonstrated by the spectacular Sanxingdui bronzes of the second millennium BC and by the number of walled enclosures of the third millennium BC associated with the Baodun culture. The latter illustrate the development of social complexity. Paradoxically, however, these are not the outcome of a long settled agricultural history but appear to be associated with the movement of the first farming communities into this region. Recent excavations at the Baodun type site have recovered plant remains indicating not only the importance of rice cultivation, but also the role played by millet in the economy of these and other sites in south-west China. Rice cultivation in paddy fields was supplemented by millet cultivation in neighbouring uplands. Together they illustrate how farmers moving into this area from the Middle Yangzi adjusted their cultivation practices to adapt to their newly colonised territories.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.