An optimal prediction model for flow boiling heat transfer of refrigerant mixture R245fa inside horizontal smooth tubes is proposed based on the GRNN neural network. The main factors strongly affecting flow boiling such as mass flux rate (G), heat flux (q), quality of vapor-liquid mixture (x), evaporation temperature (Tev), and tube inner diameter (D) are used as the inputs of the model and the flow boiling heat transfer coefficient (h) as the output. Neural network model is used to optimize the prediction of flow boiling heat transfer coefficient of R245fa in horizontal light pipe through training and learning. The prediction results are in good agreement with the experimental results. For the network model of heat transfer, the average deviation is 7.59%, the absolute average deviation is 4.89%, and the root mean square deviation is 10.51%. The optimized prediction accuracy of flow boiling heat transfer coefficient is significantly improved compared with four frequently used conventional correlations. The simulation results reveal that the modeling method based on R245fa neural network is feasible to calculate the flow boiling heat transfer coefficient, and it may provide some guidelines for the optimization design of tube evaporators for R245fa.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.