This paper experimentally investigates the performance of free-space optical (FSO) communication based on mode diversity reception (MDR) using nonmode selective photonic lantern (NSPL) and equal gain combining (EGC). By employing a mode demultiplexer and combining technology in the receiver, the bit error rate (BER) and outage performance of FSO communication system can be significantly improved. However, different from diversity system with multiple receive apertures, the branches in mode diversity system are non-independent fading signals, which are influenced by not only atmospheric but also the modal crosstalk of mode demultiplexer. Therefore, we take into consideration the difference of mode demultiplexer and study four schemes for FSO mode diversity reception system: 1) NSPL with equal gain combining (NSPL-EGC), 2) NSPL with maximal ratio combining (NSPL-MRC), 3) mode selective photonic lantern with equal gain combining (MSPL-EGC), and 4) mode selective photonic lantern with equal gain combining (MSPL-MRC). Experimental results show that NSPL-EGC is the most suitable scheme for MDR with low implementation complexity, and the performance difference is less than 1 dB compared with the one using MRC at BER= 3.8×10 -3 under turbulence from weak to strong.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.