With the advent of the era of economic globalization, the world capital market is also facing financial risks. It is necessary to have a corresponding financial management early warning model to reduce economic losses. This paper uses the combination of ant colony algorithm and neural network algorithm to build a neural network improved by ant colony algorithm model. By setting relevant assumptions, the financial statements and annual report texts are predicted and analyzed and compared with the original static data forecasting model. Compared with traditional methods, the time series sequencing analysis used in this paper makes the result prediction more accurate. This allows one year’s data to be used to predict the data for the next two years. This research can provide a corresponding reference for the optimization of financial management early warning system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.