Human cytomegalovirus (HCMV) has been recognized as a cause of severe, sometimes life-threatening disease in congenitally infected newborns as well as in immunocompromised individuals. However, the molecular mechanisms of the host-virus interaction remain poorly understood. Here, we profiled the expression of mRNAs and long noncoding RNAs (lncRNAs) in THP-1 cells using the emerging RNA-seq to investigate the transcriptional changes during HCMV latent infection. At 4 days post HCMV infection, a total of 169,008,624 sequence reads and 180,616 transcripts were obtained, respectively. Of these transcripts, 1,354 noncoding genes and 12,952 protein-coding genes were observed in Refseq database. Differential gene expression analysis identified 2,153 differentially expressed genes (DEGs) between HCMV-infected and mock-infected THP-1 cells, including 1,098 up-regulated genes and 1,055 down-regulated genes. These regulated genes were involved in pathways of apoptosis, inflammatory response and cell cycle progression, all of which may be implicated in viral pathogenesis. In addition, 646 lncRNAs (208 known lncRNAs and 438 novel lncRNAs) were upregulated and 424 (140 known and 284 novel) were downregulated in infected THP-1 cells. These findings have provided a dynamic scenario of DE candidate genes and lncRNAs at the virus-host interface and clearly warrant further experimental investigation associated with HCMV infection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.