ABSTRACT. The binding of curcumin to senile plaques (SPs) and cerebral amyloid angiopathy (CAA) was examined in the aged brain of various animal species and a human patient with Alzheimer's disease (AD), together with its binding to neurofibrillary tangles (NFTs).Brain sections were immunostained with anti-amyloid protein 1-42 (A42) and anti-amyloid protein 1-40 (A40) antibodies. These sections were also stained with alkaline Congo red, periodic acid-methenamine silver (PAM), and curcumin (0.009% curcumin solution) with or without formic acid pretreatment. The sections from the AD brain were also immunostained for anti-paired helical filament-tau (PHF-tau), and were stained with Gallyas silver for NFTs. Some SPs in the AD, monkey, dog, bear, and amyloid precursor protein transgenic mouse (APP Tg-mouse) brains contained congophilic materials, and were intensely positive for curcumin. In addition, curcumin labeled some diffuse SPs negative for Congo red in the AD, monkey, bear, and APP Tg-mouse brains. In all animals, CAA was intensely positive for both Congo red and curcumin. The specific curcumin staining activity was lost by formic acid pretreatment. In the AD brain, NFTs positive for PHF-tau and Gallyas silver were moderately stained with curcumin. These findings indicate that curcumin specifically binds to the aggregated A molecules in various animals, and further to phosphorylated tau protein, probably according to its conformational nature.
The incidence of AA amyloidosis is high in humans with rheumatoid arthritis and several animal species, including cats and cattle with prolonged inflammation. AA amyloidosis can be experimentally induced in mice using severe inflammatory stimuli and a coinjection of AA amyloid; however, difficulties have been associated with transmitting AA amyloidosis to a different animal species, and this has been attributed to the ''species barrier.'' The interleukin-1 receptor antagonist knockout (IL-1raKO) mouse, a rodent model of human rheumatoid arthritis, has been used in the transmission of AA amyloid. When IL-1raKO and BALB/c mice were intraperitoneally injected with mouse AA amyloid together with a subcutaneous pretreatment of 2% AgNO 3 , all mice from both strains that were injected with crude or purified murine AA amyloid developed AA amyloidosis. However, the amyloid index, which was determined by the intensity of AA amyloid deposition, was significantly higher in IL-1raKO mice than in BALB/c mice. When IL-1raKO and BALB/c mice were injected with crude or purified bovine AA amyloid together with the pretreatment, 83% (5/6 cases) and 38% (3/8 cases) of IL-1raKO mice and 17% (1/6 cases) and 0% (0/6 cases) of BALB/c mice, respectively, developed AA amyloidosis. Similarly, when IL-1raKO and BALB/c mice were injected with crude or purified feline AA amyloid, 33% (2/6 cases) and 88% (7/8 cases) of IL-1raKO mice and 0% (0/6 cases) and 29% (2/6 cases) of BALB/c mice, respectively, developed AA amyloidosis. These results indicated that IL-1raKO mice are a useful animal model for investigating AA amyloidogenesis.
Amyloid A (AA) amyloidosis, a fatal systemic amyloid disease, occurs secondary to chronic inflammatory conditions in humans. Although persistently elevated serum amyloid A (SAA) levels are required for its pathogenesis, not all individuals with chronic inflammation necessarily develop AA amyloidosis. Furthermore, many diseases in cats are associated with the elevated production of SAA, whereas only a small number actually develop AA amyloidosis. We hypothesized that a genetic mutation in the SAA gene may strongly contribute to the pathogenesis of feline AA amyloidosis. In the present study, genomic DNA from four Japanese domestic cats (JDCs) with AA amyloidosis and from five without amyloidosis was analyzed using polymerase chain reaction (PCR) amplification and direct sequencing. We identified the novel variation combination of 45R-51A in the deduced amino acid sequences of four JDCs with amyloidosis and five without. However, there was no relationship between amino acid variations and the distribution of AA amyloid deposits, indicating that differences in SAA sequences do not contribute to the pathogenesis of AA amyloidosis. Immunohistochemical analysis using antisera against the three different parts of the feline SAA protein—i.e., the N-terminal, central, and C-terminal regions—revealed that feline AA contained the C-terminus, unlike human AA. These results indicate that the cleavage and degradation of the C-terminus are not essential for amyloid fibril formation in JDCs.
A large abdominal mass was found in a dog. Histopathologically, the surface of the mass was covered with compressed adrenal gland tissue. The neoplastic cells showed typical features of malignant peripheral nerve sheath tumor (MPNST), including Antoni type A and type B pattern, and nuclear palisading. Immunohistochemically, these cells were positive for S100 protein, nerve growth factor receptor, nestin and claudin-1. The dog was euthanized because of the developing multiple metastatic lesions. The metastatic cells showed quite similar histopathological and immunohistochemical features as those in the original tumor. Although MPNST can develop at many body sites, this is the first report of MPNST originating from the adrenal gland in a dog.
ABSTRACT. A 6-year-old female Labrador retriever presented with a mass in the right mammary gland, and swollen right inguinal and axillary lymph nodes. Fine needle aspiration biopsy suggested a malignant lipid-producing tumor, such as liposarcoma. Histopathologically, the neoplasms were solid, lobulated nests of atypical epithelial cells with a large amount of extracellular deposits of amyloid in both mammary gland and lymph nodes. The proliferating cells contained large cytoplasmic vacuoles, positive for oil red-O. These cells were immunopositive for cytokeratin (AE1/AE3) and β-casein and negative for SMA. The amyloid deposits were immunopositive for β-casein. These findings suggested that the proliferating cells secreted β-casein forming amyloid deposits. This is the first report of mammary lipid-rich carcinoma with extensive amyloid deposition derived from β-casein.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.