Snow water equivalents (SWE) produced by the National Centers for Environmental Prediction-U.S. Department of Energy (NCEP-DOE) and 40-yr European Centre for Medium-Range Weather Forecasts (ERA-40) reanalyses and snow depths (SD) produced by the 25-yr Japanese "JRA-25" reanalysis over the main Russian river basins for 1979-2000 were examined against measured data. The analysis included comparisons of mean basin values and correlation of anomalies, as well as seasonal and interannual variabilities and trends. ERA-40 generally provided better estimates of mean SWE values for river basins than did the NCEP-DOE reanalysis. Mean SD values from the JRA-25 reanalysis were systematically underestimated. The best correlations among the anomalies were given by ERA-40, followed by JRA-25. All reanalyses reproduced seasonal variability well, although the differences in absolute values varied substantially. The highest differences were typically connected with the snowmelt period (April and May). Interannual variability confirmed the errors of ERA-40 and JRA-25 in 1992-94 and 1979-83, respectively. Otherwise, the reproduction of the interannual variability of SWE and SD was reasonable. Strong biases in SD data from JRA-25 that decrease with time induce artificial positive trends. Significant underestimations of SWE data by ERA-40 for 1991-94 influenced the values of the trends. NCEP-DOE reasonably represented the trend found in measured data. In general, the highest discrepancies between measured and reanalysis data were found for the northern European and eastern Asian rivers (Pechora, Lena, and Amur). The assessment of the quality of SWE and SD reanalysis data can help potential users in the selection of a particular reanalysis as being appropriate to the purpose of their studies.
The contribution of rice production to the three major greenhouse gases CO 2 , CH 4 and N 2 O in 1990, the base year of the Kyoto protocol is investigated for Japan. For the CO 2 assessment, we use a top-down life cycle approach, CH 4 is assessed using the Japanese GHG emission inventory and N 2 O is assessed according to the ratio of rice area divided by the total area of agricultural soils. In total, 1.6% of greenhouse gas (GHG) emissions in 1990 originated from rice production. Next, we assess regional variations in nine rice-producing regions, based on the CO 2 data of 1990. General trends in rice production from 1960 to 2000 and data from the Japanese GHG emission inventory since 1990 are used to assess variations in time. The rice-related GHG emissions decreased to 1.05% of the total GHG emissions in 2001 and will be less than half the 1990 level in 2012, mainly due to the decrease in rice production. Contrary to the trend in GHG emissions of rice, overall GHG emissions increased as rice production fulfils important roles, in mitigating global warming and in adapting to changing climates. The protection of rice production M. Breiling ( ) is required to counter the increase of GHG emissions in transportation, waste and domestic sectors and to minimize problems related to landscape, water and natural hazard management.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.