Microbial Induced Carbonate Precipitation (MICP) is one of the most commonly researched topics on biocementation, which achieves cementation of soil particles by carbonate from urea hydrolysis catalyzed by microbial urease. Although most MICP studies are limited to stabilizing sandy soils, more researchers are now turning their interest to other weak soils, particularly organic soils. To stabilize organic soils, the influence of humic substances should be investigated since it has been reported to inhibit urease activity and disrupt the formation of calcium carbonate. This study investigates the effect of humic acid (HA), one fraction of humic substances, on MICP. For this purpose, the effects of HA content on CaCO3 precipitation using three strains and on CaCO3 morphology were examined. The results showed that native species in organic soils were less adversely affected by HA addition than the exogenous one. Another interesting finding is that bacteria seem to have strategies to cope with harsh conditions with HA. Observation of CaCO3 morphology revealed that the crystallization process was hindered by HA to some extent, producing lots of fine amorphous precipitates and large aggregated CaCO3. Overall, this study could provide an insightful understanding of possible obstacles when using MICP to stabilize organic soils.
Microbial induced carbonate precipitation (MICP) through the ureolysis metabolic pathway is one of the most studied topics in biocementation due to its high efficiency. Although excellent outcomes have proved the potential of this technique, microorganisms face some obstacles when considering complicated situations in the real field, such as bacterial adaptability and survivability issues. This study made the first attempt to seek solutions to this issue from the air, exploring ureolytic airborne bacteria with resilient features to find a solution to survivability issues. Samples were collected using an air sampler in Sapporo, Hokkaido, a cold region where sampling sites were mostly covered with dense vegetation. After two rounds of screening, 12 out of 57 urease-positive isolates were identified through 16S rRNA gene analysis. Four potentially selected strains were then evaluated in terms of growth pattern and activity changes within a range of temperatures (15°C–35°C). The results from sand solidification tests using two Lederbergia strains with the best performance among the isolates showed an improvement in unconfined compressive strength up to 4–8 MPa after treatment, indicating a high MICP efficiency. Overall, this baseline study demonstrated that the air could be an ideal isolation source for ureolytic bacteria and laid a new pathway for MICP applications. More investigations on the performance of airborne bacteria under changeable environments may be required to further examine their survivability and adaptability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.