Ribosome-inactivating proteins (RIPs) belong to a family of enzymes that attack eukaryotic ribosomes and potently inhibit cellular protein synthesis. RIPs possess several biomedical properties, including anti-viral and anti-tumor activities. Multiple RIPs are known to inhibit tumor cell proliferation through inducing apoptosis in a variety of cancers, such as breast cancer, leukemia/lymphoma, and hepatoma. This review focuses on the anti-tumor activities of RIPs and their apoptotic effects through three closely related pathways: mitochondrial, death receptor, and endoplasmic reticulum pathways.
Trichosanthin is a plant toxin belonging to the family of ribosome-inactivating proteins. It has various biological and pharmacological activities, including anti-tumor and immunoregulatory effects. In this study, we explored the potential medicinal applications of trichosanthin in cancer immunotherapy. We found that trichosanthin and cation-independent mannose-6-phosphate receptor competitively bind to the Golgi-localized, γ-ear containing and Arf-binding proteins. It in turn promotes the translocation of cation-independent mannose-6-phosphate receptor from the cytosol to the plasma membrane, which is a receptor of Granzyme B. The upregulation of this receptor on the tumor cell surface increased the cell permeability to Granzyme B, and the latter is one of the major factors of cytotoxic T lymphocyte-mediated tumor cell apoptosis. These results suggest a novel potential application of trichosanthin and shed light on its anti-tumor immunotherapy.
A Ni-catalyzed decarboxylative crosscoupling of potassium polyfluorobenzoates with unactivated phenol and phenylmethanol derivatives is described. This novel transformation provides a practical and efficient protocol towards the synthesis of important polyfluorobiaryls and polyfluorinated diarylmethanes, and greatly enlarges the range of electrophiles utilized in decarboxylative coupling. Remarkably, preliminary mechanistic studies indicated the essential role of Zn(OAc) 2 might lie in the enhancement of decarboxylation step.
Background
Tongue squamous cell carcinoma (TSCC) is a common type of oral cancer, with a relatively poor prognosis and low post-treatment survival rate. Various strategies and novel drugs to treat TSCC are emerging and under investigation. Trichosanthin (TCS), extracted from the root tubers of Tian-Hua-Fen, has been found to have multiple biological and pharmacological functions, including inhibiting the growth of cancer cells. Granzyme B (GrzB) is a common toxic protein secreted by natural killer cells and cytotoxic T cells. Our group has reported that TCS combined with GrzB might be a superior approach to inhibit liver tumor progression, but data relating to the use of this combination to treat TSCC remain limited. The aim of this study was to examine the effectiveness of TCS on TSCC processes and underlying mechanisms.
Methods
First, we screened the potential antitumor activity of TCS using two types of SCC cell lines. Subsequently, a subcutaneous squamous cell carcinoma xenograft model in nude mice was established. These model mice were randomly divided into four groups and treated as follows: control group, TCS treatment group, GrzB treatment group, and TCS/GrzB combination treatment group. Various tumorigenesis parameters, such as Ki67, PCNA, caspase-3, Bcl-2 and VEGFA, et al., were performed to determine the effects of these treatments on tumor development.
Results
Screening confirmed that the SCC25 line exhibited greater sensitivity than the SCC15 line to TCS in vitro studies. TCS or GrzB treatment significantly inhibited tumor growth compared with the inhibition seen in the control group. The TCS/GrzB combination inhibited tumor growth more than either drug alone. TCS treatment inhibited tumor proliferation by downregulating Ki67 and Bcl2 protein expression while accelerating tumor apoptosis. In the TCS/GrzB-treated group, expression of Ki67 was further downregulated, while the level of activated caspase-3 was increased, compared with their expression in either of the single drug treatment groups.
Conclusion
These results suggest that the TCS/GrzB combination could represent an effective immunotherapy for TSCC.
Mas-related genes (Mrgs) belong to a large family of G protein-coupled receptor genes found in rodents. Human MRGX proteins are G protein-coupled 7-transmembrane proteins sharing 41-52% amino acid identity with each other, but have no orthologs in rodents. MrgX2 is a member of the MrgX family. MRGX2 is expressed in the small neurons of sensory ganglia and mast cells. It can interact with a series of factors and genes such as the peptides substance P, vasoactive intestinal peptide, cortistatin (CST), proadrenomedullin N-terminal peptide (PAMP), LL-37, PMX-53 and β-defensins. MRGX2 is related to nociception, adrenal gland secretion and mast cell degranulation. Recent research on MrgX2 provides insights into its role in nociception and anti-microbial activities. This article reviewed the origin, expression and function of MrgX2, and discussed possible future research focus.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.