Runoff modeling is one of the key challenges in the field of hydrology. Various approaches exist, ranging from physically based over conceptual to fully data driven models. In this paper, we propose a data driven approach using the state-of-the-art Long-Short-Term-Memory (LSTM) network. The proposed model was applied in the Poyang Lake Basin (PYLB) and its performance was compared with an Artificial Neural Network (ANN) and the Soil & Water Assessment Tool (SWAT). We first tested the impacts of the number of previous time step (window size) in simulation accuracy. Results showed that a window in improper large size will dramatically deteriorate the model performance. In terms of PYLB, a window size of 15 days might be appropriate for both accuracy and computational efficiency. We then trained the model with 2 different input datasets, namely, dataset with precipitation only and dataset with all available meteorological variables. Results demonstrate that although LSTM with precipitation data as the only input can achieve desirable results (where the NSE ranged from 0.60 to 0.92 for the test period), the performance can be improved simply by feeding the model with more meteorological variables (where NSE ranged from 0.74 to 0.94 for the test period). Moreover, the comparison results with the ANN and the SWAT showed that the ANN can get comparable performance with the SWAT in most cases whereas the performance of LSTM is much better. The results of this study underline the potential of the LSTM for runoff modeling especially for areas where detailed topographical data are not available.
Purpose: The Yellow River delta boasts rich land resources but lacks fresh water and exhibits poor natural conditions. To rationally develop and utilize the land resources therein, it is necessary to evaluate the soil quality. Methods: Adopting specific screening conditions, principal component analysis (PCA) was used to construct a minimum data set (MDS) from 10 soil indicators. Then, a complete soil quality evaluation index system of the Yellow River delta was developed. The soil quality comprehensive index (SQI) method was used to assess the soil quality in the Kenli District, and the soil quality grades and spatial distribution were analyzed. Results: (1) The average SQI of the Kenli District is 0.523, and the best soil quality is concentrated near the Yellow River, especially in Huanghekou town. (2) The normalized difference vegetation index was positively correlate with SQI, whereas Dr (nearest distance between the sampling site and Yellow River) and Ds (nearest distance between the sampling site and Bohai Sea) were negatively correlated with SQI. Elev (sampling site elevation) was not correlated with SQI. (3) The SQI of agricultural planting is greater than that of the natural land type and significantly greater than that of nudation. The main factors limiting farmland soil quality are SK (water-soluble potassium) and pH, whereas the factor limiting the natural land type are the soil nutrient indicators. Conclusions: To improve soil quality and develop and utilize land resources, the towns should adopt systematic land development/utilization methods based on local conditions. These results have important guiding significance and practical value for the more objective and accurate evaluation of soil quality in coastal areas and the development and utilization of land resources.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.