In wireless sensor networks, organizing nodes into clusters, finding routing paths and maintaining the clusters are three critical factors that significantly impact the network lifetime. In this paper, using a chaotic genetic algorithm, a clustering routing protocol combined with these three features called CRCGA is proposed to improve the network energy efficiency and load balancing. In CRCGA, the chaotic genetic algorithm is used to select the best cluster heads (CHs) and to find the optimal routing paths by coding them into a single chromosome simultaneously. Chaotic genetic operators based on a novel fitness function considering minimum energy consumption and load balancing along with new determination conditions make the algorithm converge quickly. Besides, an adaptive round time considering energy and load balancing is presented to maintain the clusters so as to further reduce energy consumption. Simulation results indicate that CRCGA is better than LEACH, GECR, OMPFM and GADA-LEACH in terms of convergence speed, energy efficiency, load balancing, network throughput and lifetime. INDEX TERMS WSNs, Multi-hop routing, Chaotic genetic algorithm, Clustering, Energy and load Balancing.
A trust‐aware secure routing protocol (TSRP) for wireless sensor networks is proposed in this paper to defend against varieties of attacks. First, each node calculates the comprehensive trust values of its neighbors based on direct trust value, indirect trust value, volatilization factor, and residual energy to defend against black hole, selective forwarding, wormhole, hello flood, and sinkhole attacks. Second, any source node that needs to send data forwards a routing request packet to its neighbors in multi‐path mode, and this continues until the sink at the end is reached. Finally, the sink finds the optimal path based on the path's comprehensive trust values, transmission distance, and hop count by analyzing the received packets. Simulation results show that TSRP has lower network latency, smaller packet loss rate, and lower average network energy consumption than ad hoc on‐demand distance vector routing and trust based secure routing protocol.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.