We consider a two-way relay network, where two source nodes, S1 and S2,
exchange information through a cluster of relay nodes. The relay nodes receive
the sum signal from S1 and S2 in the first time slot. In the second time slot,
each relay node multiplies its received signal by a complex coefficient and
retransmits the signal to the two source nodes, which leads to a collaborative
two-way beamforming system. By applying the principle of analog network coding,
each receiver at S1 and S2 cancels the "self-interference" in the received
signal from the relay cluster and decodes the message. This paper studies the
2-dimensional achievable rate region for such a two-way relay network with
collaborative beamforming. With different assumptions of channel reciprocity
between the source-relay and relay-source channels, the achievable rate region
is characterized under two setups. First, with reciprocal channels, we
investigate the achievable rate regions when the relay cluster is subject to a
sum-power constraint or individual-power constraints. We show that the optimal
beamforming vectors obtained from solving the weighted sum inverse-SNR
minimization (WSISMin) problems are sufficient to characterize the
corresponding achievable rate region. Furthermore, we derive the closed form
solutions for those optimal beamforming vectors and consequently propose the
partially distributed algorithms to implement the optimal beamforming, where
each relay node only needs the local channel information and one global
parameter. Second, with the non-reciprocal channels, the achievable rate
regions are also characterized for both the sum-power constraint case and the
individual-power constraint case. Although no closed-form solutions are
available under this setup, we present efficient numerical algorithms.Comment: new version of the previously posted, single column double spacing,
24 page
TIP27 has an important role in glucose homeostasis through the regulation of hepatic glucose metabolism and insulin sensitivity. Furthermore, this regulation requires activation of PI3-kinase.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.