Associations between intake of specific nutrients and disease cannot be considered primary effects of diet if they are simply the result of differences between cases and noncases in body size, physical activity, and metabolic efficiency. Epidemiologic studies of diet and disease should therefore be directed at the effect of nutrient intakes independent of total caloric intake in most instances. This is not accomplished with nutrient density measures of dietary intake but can be achieved by employing nutrient intakes adjusted for caloric intake by regression analysis. While pitfalls in the manipulation and interpretation of energy intake data in epidemiologic studies have been emphasized, these considerations also highlight the usefulness of obtaining a measurement of total caloric intake. For instance, if a questionnaire obtained information on only cholesterol intake in a study of coronary heart disease, it is possible that no association with disease would be found even if a real positive effect of a high cholesterol diet existed, since the caloric intake of cases is likely to be less than that of noncases. Such a finding could be appropriately interpreted if an estimate of total caloric intake were available. The relationships between dietary factors and disease are complex. Even with carefully collected measures of intake, consideration of the biologic implications of various analytic approaches is needed to avoid misleading conclusions.
medRxiv preprint 2 Background: Data for frontline healthcare workers (HCWs) and risk of SARS-CoV-2 infection are limited and whether personal protective equipment (PPE) mitigates this risk is unknown. We evaluated risk for COVID-19 among frontline HCWs compared to the general community and the influence of PPE. Methods:We performed a prospective cohort study of the general community, including frontline HCWs, who reported information through the COVID Symptom Study smartphone application beginning on March 24 (United Kingdom, U.K.) and March 29 (United States, U.S.) through April 23, 2020. We used Cox proportional hazards modeling to estimate multivariate-adjusted hazard ratios (aHRs) of a positive COVID-19 test. Findings: Among 2,035,395 community individuals and 99,795 frontline HCWs, we documented 5,545 incident reports of a positive COVID-19 test over 34,435,272 person-days. Compared with the general community, frontline HCWs had an aHR of 11·6 (95% CI: 10·9 to 12·3) for reporting a positive test. The corresponding aHR was 3·40 (95% CI: 3·37 to 3·43) using an inverse probability weighted Cox model adjusting for the likelihood of receiving a test. A symptom-based classifier of predicted COVID-19 yielded similar risk estimates. Compared with HCWs reporting adequate PPE, the aHRs for reporting a positive test were 1·46 (95% CI: 1·21 to 1·76) for those reporting PPE reuse and 1·31 (95% CI: 1·10 to 1·56) for reporting inadequate PPE. Compared with HCWs reporting adequate PPE who did not care for COVID-19 patients, HCWs caring for patients with documented COVID-19 had aHRs for a positive test of 4·83 (95% CI: 3·99 to 5·85) if they had adequate PPE, 5·06 (95% CI: 3·90 to 6·57) for reused PPE, and 5·91 (95% CI: 4·53 to 7·71) for inadequate PPE. Interpretation: Frontline HCWs had a significantly increased risk of COVID-19 infection, highest among HCWs who reused PPE or had inadequate access to PPE. However, adequate supplies of PPE did not completely mitigate high-risk exposures.
Common single-nucleotide polymorphisms (SNPs) are predicted to collectively explain 40–50% of phenotypic variation in human height, but identifying the specific variants and associated regions requires huge sample sizes1. Here, using data from a genome-wide association study of 5.4 million individuals of diverse ancestries, we show that 12,111 independent SNPs that are significantly associated with height account for nearly all of the common SNP-based heritability. These SNPs are clustered within 7,209 non-overlapping genomic segments with a mean size of around 90 kb, covering about 21% of the genome. The density of independent associations varies across the genome and the regions of increased density are enriched for biologically relevant genes. In out-of-sample estimation and prediction, the 12,111 SNPs (or all SNPs in the HapMap 3 panel2) account for 40% (45%) of phenotypic variance in populations of European ancestry but only around 10–20% (14–24%) in populations of other ancestries. Effect sizes, associated regions and gene prioritization are similar across ancestries, indicating that reduced prediction accuracy is likely to be explained by linkage disequilibrium and differences in allele frequency within associated regions. Finally, we show that the relevant biological pathways are detectable with smaller sample sizes than are needed to implicate causal genes and variants. Overall, this study provides a comprehensive map of specific genomic regions that contain the vast majority of common height-associated variants. Although this map is saturated for populations of European ancestry, further research is needed to achieve equivalent saturation in other ancestries.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.