The purpose of this work is to characterize the morphological, structural, and strength properties of model prototypes of new-generation TRi-structural ISOtropic particle fuel (TRISO) designed for Generation IV high-temperature gas reactors (HTGR-type). The choice of model structures consisting of inner pyrolytic carbon (I-PyC), silicon carbide (SiC), and outer pyrolytic carbon (O-PyC) as objects of research is motivated by their potential use in creating a new generation of fuel for high-temperature nuclear reactors. To fully assess their full functional value, it is necessary to understand the mechanisms of resistance to external influences, including mechanical, as in the process of operation there may be external factors associated with deformation and leading to the destruction of the surface of fuel structures, which will critically affect the service life. The objective of these studies is to obtain new data on the fuel properties, as well as their resistance to external influences arising from mechanical friction. Such studies are necessary for further tests of this fuel on corrosion and irradiation resistance, as closely as possible to real conditions in the reactor. The research revealed that the study samples have a high degree of resistance to external mechanical influences, due to the high strength of the upper layer consisting of pyrolytic carbon. The presented results of the radiation resistance of TRISO fuel testify to the high resistance of the near-surface layer to high-dose irradiation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.