In recent years, oyster mushroom (Pleurotus ostreatus) has become one of the most cultivated mushrooms in the world, mainly in Brazil. Among many factors involved in a mushroom production, substrate preparation is the most critical step, which can be influenced by composting management techniques. Looking forward to optimizing the substrate preparation process, were tested different composting conditions (7 and 14 days of composting with or without conditioning), potential raw materials (decumbens grass, brizantha grass and sugarcane straw) and nitrogen supplementation (with or without wheat bran) on oyster mushroom yield and biological efficiency (BE). The substrate composted for 7 days with conditioning showed higher yield and biological efficiency of mushroom (24.04 and 100.54 %, respectively). Substrates without conditioning (7 and 14 days of composting) showed smaller mushroom yield and biological efficiency. Among the raw materials tested, brizantha grass showed higher mushroom yield followed by decumbens grass, sugarcane straw and wheat straw (28.5, 24.32, 23.5 and 19.27 %, respectively). Brizantha grass also showed higher biological efficiency followed by sugarcane straw, decumbens grass and wheat straw (123.95, 103.70, 96.90 and 86.44 %, respectively). Supplementation with wheat bran improved yield and biological efficiency in all substrate formulations tested; thus, oyster mushroom yield and biological efficiency were influenced by substrate formulation (raw materials), supplementation and composting conditions.
To investigate the yield and precocity of Agaricus blazei using to different casing layers and cultivation environments, five casing layers were prepared with soil (different textures), wood charcoal, and calcitic lime. After colonization, the composts were placed in two growing rooms (controlled environment and plastic greenhouse) and cased. The cycle was 120 days. Yield and precocity data were evaluated in a factorial combination (5 soil types 92 cultivation environments) and 8 replications. The results showed low yields when cultivated in a controlled room (1.55 kg of mushrooms per box) and yield values of different soils ranged between 1.61 and 1.88 kg of mushrooms per box. The precocity values of the different soils and environments ranged between 62 and 51% in the first 50 days of production. The various soil types did not differ statistically for yield values (kg) and the plastic greenhouse provided higher yields. The texture of the different soils and environment directly influenced precocity in A. blazei yield.
This experiment was carried out to evaluate the effect of the fungi Trichoderma sp. and Chaetomium olivacearum on the productivity, biological efficiency and number of Agaricus blazei mushrooms grown in compost (mixture of crushed sugarcane, coast-cross grass trash, soybean meal, gypsum, and calcitic limestone). The experiment consisted of 3 treatments (Trichoderma sp., C. olivacearum, and a control) with 8 replications each (box containing 12kg of compost colonized by A. blazei). Later, 150g of inoculum of each contaminant fungus (Trichoderma sp. and C. olivacearum) were distributed on the surface of the compost previously colonized by A. blazei. The experiment was conducted in a greenhouse with a plastic roof, under relative humidity of about 60-90% and temperature between 20-34ºC. Productivity was determined from the relation between fresh weight of the mushroom and fresh weight of the compost. Biological efficiency was determined from the relation between fresh weight of the mushroom and dry weight of the compost at the end of the harvesting period. Based on results obtained, the contaminant fungi did not affect the productivity, biological efficiency, and number of A. blazei mushrooms grown in compost when introduced into previously colonized composts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.